JEE MAIN TEST – 9

Mathematics Questions

1. The integral \int \frac{1}{\sqrt[4]{(x-1)^3 (x+2)^5}} \, dx is equal to (where C is a constant of integration):
(A) \dfrac{3}{4} \left( \dfrac{x+2}{x-1} \right)^{\frac{1}{4}} + C
(B) \dfrac{3}{4} \left( \dfrac{x+2}{x-1} \right)^{\frac{5}{4}} + C
(C) \dfrac{4}{3} \left( \dfrac{x-1}{x+2} \right)^{\frac{1}{4}} + C
(D) \dfrac{4}{3} \left( \dfrac{x-1}{x+2} \right)^{\frac{5}{4}} + C
Click to View Answer
Correct Answer: [Insert Correct Option]
2. If \int_0^{100} \dfrac{\sin^2 x}{e^{\left( \frac{x}{\pi} \left[ \frac{x}{\pi} \right] \right)}} \, dx = \dfrac{\alpha \pi^3}{1 + 4\pi^2}, \alpha \in \mathbb{R}, where [x] is the greatest integer less than or equal to x, then the value of \alpha is:
(A) 200 (1 - e^{-1})
(B) 100 (1 - e)
(C) 50 (e - 1)
(D) 150 (e^{-1} - 1)
Click to View Answer
Correct Answer: [Insert Correct Option]
3. Let y = y(x) be the solution of the differential equation x \, dy = (y + x^3 \cos x) \, dx with y(\pi) = 0. Then y\left( \dfrac{\pi}{2} \right) is equal to:
(A) \dfrac{\pi^2}{4} + \dfrac{\pi}{2}
(B) \dfrac{\pi^2}{2} + \dfrac{\pi}{4}
(C) \dfrac{\pi^2}{2} - \dfrac{\pi}{4}
(D) \dfrac{\pi^2}{4} - \dfrac{\pi}{2}
Click to View Answer
Correct Answer: [Insert Correct Option]
4. The area (in sq. units) of the region given by the set \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} \mid x \geq 0, 2x^2 \leq y \leq 4 - 2x \right\} is:
(A) \dfrac{8}{3}
(B) \dfrac{17}{3}
(C) \dfrac{13}{3}
(D) \dfrac{7}{3}
Click to View Answer
Correct Answer: [Insert Correct Option]
5. The last common term to the sequences 1, 11, 21, 31 (100 terms) and 31, 36, 41, 46 (100 terms) is:
(A) 381
(B) 521
(C) 281
(D) None
Click to View Answer
Correct Answer: [Insert Correct Option]
6. If A = \begin{bmatrix} 1 + a^2 + a^4 & 1 + ab + a^2 b^2 & 1 + ac + a^2 c^2 \\ 1 + ab + a^2 b^2 & 1 + b^2 + b^4 & 1 + bc + b^2 c^2 \\ 1 + ac + a^2 c^2 & 1 + bc + b^2 c^2 & 1 + c^2 + c^4 \end{bmatrix} and \det(A) = \det(4I), where I is the 3 \times 3 identity matrix, then \left| (a - b)^3 + (b - c)^3 + (c - a)^3 \right| is equal to:
(A) 24
(B) 34
(C) 28
(D) 32
Click to View Answer
Correct Answer: [Insert Correct Option]
7. From a pack of 52 well-shuffled cards, cards are drawn one by one without replacement. If the 4^{\text{th}} drawn card is found to be an ace, then the probability that there are no more aces left in the pack is:
(A) \dfrac{1}{{}^{48}C_3 + 3 {}^{49}C_2 + 1}
(B) \dfrac{1}{{}^{48}C_3 + {}^{49}C_2 + 1}
(C) \dfrac{1}{{}^{48}C_3 + {}^{49}C_2 + 1}
(D) \dfrac{1}{{}^{52}C_4 + 1}
Click to View Answer
Correct Answer: [Insert Correct Option]
8. If |z_1| = 2, |z_2| = 3, |z_3| = 4, and |2z_1 + 3z_2 + 4z_3| = 9, then the value of |8z_2 z_3 + 27z_3 z_1 + 64z_1 z_2| is equal to:
(A) 216
(B) 18
(C) 64
(D) None
Click to View Answer
Correct Answer: [Insert Correct Option]
9. Let \lambda \in \mathbb{R}. The system of linear equations \begin{aligned} 2x_1 - 4x_2 + \lambda x_3 &= 1 \\ x_1 - 6x_2 + x_3 &= 2 \\ \lambda x_1 - 10x_2 + 4x_3 &= 3 \end{aligned} is inconsistent for:
(A) Exactly one negative value of \lambda
(B) Exactly one positive value of \lambda
(C) Every value of \lambda
(D) Exactly two values of \lambda
Click to View Answer
Correct Answer: [Insert Correct Option]
10. If the value of \dfrac{3 \cos 36^\circ + 5 \sin 18^\circ}{5 \cos 36^\circ - 3 \sin 18^\circ} is \dfrac{a \sqrt{5} - b}{c}, where a, b, c are natural numbers and \gcd(a, c) = 1, then a + b + c is equal to:
(A) 50
(B) 40
(C) 52
(D) 54
Click to View Answer
Correct Answer: [Insert Correct Option]
11. If the variance of the frequency distribution is 160, then the value of c \in \mathbb{N} is:
x c 2c 3c 4c 5c 6c
f 2 1 1 1 1 1
(A) 5
(B) 8
(C) 7
(D) 6
Click to View Answer
Correct Answer: [Insert Correct Option]
12. Let \alpha, \beta \in \mathbb{R}. Let the mean and the variance of 6 observations -3, 4, 7, -6, \alpha, \beta be 2 and 23, respectively. The mean deviation about the mean of these 6 observations is:
(A) \dfrac{13}{3}
(B) \dfrac{16}{3}
(C) \dfrac{11}{3}
(D) \dfrac{14}{3}
Click to View Answer
Correct Answer: [Insert Correct Option]
13. f(x) = \begin{cases} 2 - |x^2 + 5x + 6|, & x \neq -2 \\ a^2 + 1, & x = -2 \end{cases}. Then the range of a, so that f(x) has a maximum at x = -2, is:
(A) |a| \geq 1
(B) |a| < 1
(C) a > 1
(D) a < 1
Click to View Answer
Correct Answer: [Insert Correct Option]
14. Let f: \mathbb{R} \to \mathbb{R} be a function such that f\left( \dfrac{x + y}{3} \right) = \dfrac{f(x) + f(y)}{3}, f(0) = 3, and f'(0) = 3. Then which of the following is correct?
(A) \dfrac{f(x)}{x} is differentiable in \mathbb{R}
(B) f(x) is continuous but not differentiable in \mathbb{R}
(C) f(x) is continuous in \mathbb{R}
(D) None
Click to View Answer
Correct Answer: [Insert Correct Option]
15. Let f(x) = 3^{\alpha x} + 3^{\beta x}, where \alpha \neq \beta and 3 f'(x) \log_3 e = 2 f(x) + f''(x) \cdot (\log_3 e)^2 for all x. Then the value of \alpha + \beta is:
(A) 3
(B) 2
(C) -3
(D) 6
Click to View Answer
Correct Answer: [Insert Correct Option]
16. If f: [-4, 4] \to \mathbb{R}, where f(x) = \left[ \dfrac{x^4 + 1}{a} \right] \sin x + \cos x + \dfrac{e^x + e^{-x}}{2} (where [.] is the greatest integer function) is an even function, then:
(A) a \in (0, 257]
(B) a \in [257, \infty)
(C) a \in (257, \infty)
(D) a \in (0, 257)
Click to View Answer
Correct Answer: [Insert Correct Option]
17. The vertices of a variable triangle are (3, 4), (5 \cos \theta, 5 \sin \theta), and (5 \sin \theta, -5 \cos \theta), where \theta \in \mathbb{R}. The locus of its orthocenter is:
(A) (x + y - 1)^2 + (x - y - 7)^2 = 100
(B) (x + y - 7)^2 + (x - y - 1)^2 = 100
(C) (x + y - 7)^2 + (x + y - 1)^2 = 100
(D) (x + y - 7)^2 + (x - y + 1)^2 = 100
Click to View Answer
Correct Answer: [Insert Correct Option]
18. The point (a^2, a + 1) is a point in the angle between the lines 3x - y + 1 = 0 and x + 2y - 5 = 0 containing the origin, if:
(A) a \geq 1 or a \leq -3
(B) a \in (0, 1)
(C) a \in (-3, 0) \cup \left( \dfrac{1}{3}, 1 \right)
(D) None of these
Click to View Answer
Correct Answer: [Insert Correct Option]
19. In the right angle triangle as shown, an altitude is drawn from the right angle to the hypotenuse. Circles are inscribed within each of the smaller triangles. What is the distance between the centres of these circles?

(A) 5
(B) 7
(C) 8
(D) \sqrt{50}
Click to View Answer
Correct Answer: [Insert Correct Option]
20. Vector \hat{a} in the plane of \vec{b} = 2\hat{i} + \hat{j} and \vec{c} = \hat{i} - \hat{j} + \hat{k} is such that it is equally inclined to \vec{b} and \vec{d} where \vec{d} = \hat{j} + 2\hat{k}. The value of \hat{a} is:
(A) \dfrac{\hat{i} + \hat{j} + \hat{k}}{\sqrt{3}}
(B) \dfrac{\hat{i} - \hat{j} + \hat{k}}{\sqrt{3}}
(C) \dfrac{2\hat{i} + \hat{j}}{\sqrt{5}}
(D) None of these
Click to View Answer
Correct Answer: [Insert Correct Option]
21. For real numbers \alpha, \beta, \gamma, and \delta, if \int \dfrac{(x^2 - 1) + \tan^{-1} \left( \dfrac{x^2 + 1}{x} \right)}{(x^4 + 3x^2 + 1) \tan^{-1} \left( \dfrac{x^2 + 1}{x} \right)} \, dx = \alpha \log_e \left( \tan^{-1} \left( \dfrac{x^2 + 1}{x} \right) \right) + \beta \tan^{-1} \left( \dfrac{\gamma (x^2 - 1)}{x} \right) + \delta \tan^{-1} \left( \dfrac{x^2 + 1}{x} \right) + C where C is an arbitrary constant, then the value of 10(\alpha + \beta \gamma + \delta) is equal to:
Click to View Answer
Correct Answer: [Insert Correct Answer]
22. The number of ways 16 identical cubes, of which 11 are blue and the rest are red, can be placed in a row so that between any two red cubes there should be at least 2 blue cubes, is:
Click to View Answer
Correct Answer: [Insert Correct Answer]
23. The number of solutions of \sin^2 x + (2 + 2x - x^2) \sin x - 3(x - 1)^2 = 0, where -\pi \leq x \leq \pi, is:
Click to View Answer
Correct Answer: [Insert Correct Answer]
24. Value of \lim_{x \to 0^-} \left[ \dfrac{\sin |x|}{x} \right] + \lim_{x \to 0^+} \left[ \dfrac{\sin^{-1} |x|}{|x|} \right] + \lim_{x \to 0^-} \left[ \dfrac{-2x}{\tan x} \right] (where [.] denotes the greatest integer function):
Click to View Answer
Correct Answer: [Insert Correct Answer]
25. Let a line having direction ratios 1, -4, 2 intersect the lines \dfrac{x - 7}{3} = \dfrac{y - 1}{-1} = \dfrac{z + 2}{-1} and \dfrac{x}{2} = \dfrac{y - 7}{3} = \dfrac{z}{1} at the points A and B. Then (AB)^2 is equal to:
Click to View Answer
Correct Answer: [Insert Correct Answer]