JEE MAIN TEST – 13

SECTION A: Multiple Choice Questions

1. Let z_1 = 6 + i and z_2 = 4 - 3i. Let z be a complex number such that \arg \left( \dfrac{z - z_1}{z_2 - z} \right) = \dfrac{\pi}{2}, then z satisfies:
(A) |z - (5 - i)| = 5
(B) |z - (5 - i)| = \sqrt{5}
(C) |z - (5 + i)| = 5
(D) |z - (5 + i)| = \sqrt{5}
Click to View Answer
Correct Answer: [Insert Correct Option]
2. If |z_1| = 2, |z_2| = 3, |z_3| = 4, and |16 z_1 z_2 + 9 z_1 z_3 + 4 z_2 z_3| = 96, then |z_1 + z_2 + z_3| =
(A) 2
(B) 3
(C) 4
(D) 6
Click to View Answer
Correct Answer: [Insert Correct Option]
3. If Z = \dfrac{2}{3 + \cos \theta + i \sin \theta}, then the locus of Z will be:
(A) Straight line
(B) Circle
(C) Parabola
(D) Ellipse
Click to View Answer
Correct Answer: [Insert Correct Option]
4. Eccentricity of the given curve is: If |Z + 4| + |Z - 4| = 10.
(A) \dfrac{2}{5}
(B) \dfrac{5}{2}
(C) \dfrac{5}{4}
(D) \dfrac{4}{5}
Click to View Answer
Correct Answer: [Insert Correct Option]
5. If z_1, z_2, z_3 are complex numbers such that |z_1| = 2, |z_2| = 3, |z_3| = 4, then the maximum value of |z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2 is:
(A) 87
(B) 79
(C) 52
(D) None
Click to View Answer
Correct Answer: [Insert Correct Option]
6. If x_p = \cos \left( \dfrac{\pi}{2^p} \right) + i \sin \left( \dfrac{\pi}{2^p} \right), then the value of \left( x_1 \times x_3 \times x_5 \cdots \infty \right) + \dfrac{1}{\left( x_2 \cdot x_4 \cdot x_6 \cdots \infty \right)} is:
(A) 0
(B) 1
(C) 2
(D) 3
Click to View Answer
Correct Answer: [Insert Correct Option]
7. If Z_1, Z_2 are complex numbers such that \text{Re}(Z_1) = |Z_1 - 2|, \text{Re}(Z_2) = |Z_2 - 2|, and \arg (Z_1 - Z_2) = \dfrac{\pi}{3}, then \text{Im}(Z_1 + Z_2) =
(A) \dfrac{2}{\sqrt{3}}
(B) \dfrac{4}{\sqrt{3}}
(C) 2\sqrt{3}
(D) \sqrt{3}
Click to View Answer
Correct Answer: [Insert Correct Option]
8. If z = (\tan 1 - i)^2, then:
(A) |z| = \sec 1, \text{Arg}(z) = -\dfrac{\pi}{2}
(B) |z| = \sec^2 1, \text{Arg}(z) = \pi - 2
(C) |z| = \sec^2 1, \text{Arg}(z) = 2 - \pi
(D) |z| = \sec^2 1, \text{Arg}(z) = \dfrac{\pi}{2} - 1
Click to View Answer
Correct Answer: [Insert Correct Option]
9. If \left| \dfrac{z_1 - 3 z_2}{3 - z_1 z_2} \right| = 1 and |z_2| \neq 1, then |z_1| is:
(A) 3
(B) 1
(C) 2
(D) 4
Click to View Answer
Correct Answer: [Insert Correct Option]
10. If A + B + C = \pi, e^{i\theta} = \cos \theta + i \sin \theta, and z = \begin{vmatrix} e^{i 2A} & e^{-iC} \\ e^{-iC} & e^{i 2B} \\ e^{-iB} & e^{-iA} \\ e^{-iA} & e^{i 2C} \end{vmatrix}, then:
(A) \text{Re}(z) = 4
(B) \text{Im}(z) = 1
(C) \text{Re}(z) = -4
(D) \text{Re}(z) = 0
Click to View Answer
Correct Answer: [Insert Correct Option]
11. If (a, b, c) is the image of the point (1, 2, -3) in the line \dfrac{x + 1}{2} = \dfrac{y - 3}{-2} = \dfrac{z}{-1}, then a + b + c is equal to:
(A) -1
(B) 2
(C) 3
(D) 4
Click to View Answer
Correct Answer: [Insert Correct Option]
12. The lines x = ay - 1 = z - 2 and x = 3y - 2 = bz - 2, (ab \neq 0), are coplanar if:
(A) b = 1, a \in \mathbb{R} - \{0\}
(B) a = 1, b \in \mathbb{R} - \{0\}
(C) a = 2, b = 2
(D) a = 2, b = 3
Click to View Answer
Correct Answer: [Insert Correct Option]
13. If the shortest distance between the lines \dfrac{x - 1}{2} = \dfrac{y - 2}{3} = \dfrac{z - 3}{\lambda} and \dfrac{x - 2}{1} = \dfrac{y - 4}{4} = \dfrac{z - 5}{5} is \dfrac{1}{\sqrt{3}}, then the sum of all possible values of \lambda is:
(A) 16
(B) 6
(C) 12
(D) 15
Click to View Answer
Correct Answer: [Insert Correct Option]
14. The equation of the line through the point (0, 1, 2) and perpendicular to the line \dfrac{x - 1}{2} = \dfrac{y + 1}{3} = \dfrac{z - 1}{-2} is:
(A) \dfrac{x}{3} = \dfrac{y - 1}{4} = \dfrac{z - 2}{3}
(B) \dfrac{x}{3} = \dfrac{y - 1}{-4} = \dfrac{z - 2}{3}
(C) \dfrac{x}{3} = \dfrac{y - 1}{4} = \dfrac{z - 2}{-3}
(D) \dfrac{x}{-3} = \dfrac{y - 1}{4} = \dfrac{z - 2}{3}
Click to View Answer
Correct Answer: [Insert Correct Option]
15. Let \alpha be the angle between the lines whose direction cosines satisfy the equations \ell + m - n = 0 and \ell^2 + m^2 - n^2 = 0. Then the value of \sin^4 \alpha + \cos^4 \alpha is:
(A) \dfrac{3}{4}
(B) \dfrac{3}{8}
(C) \dfrac{5}{8}
(D) \dfrac{1}{2}
Click to View Answer
Correct Answer: [Insert Correct Option]
16. If the foot of the perpendicular from point (4, 3, 8) on the line L_1: \dfrac{x - a}{\ell} = \dfrac{y - 2}{3} = \dfrac{z - b}{4}, \ell \neq 0, is (3, 5, 7), then the shortest distance between the line L_1 and line L_2: \dfrac{x - 2}{3} = \dfrac{y - 4}{4} = \dfrac{z - 5}{5} is equal to:
(A) \dfrac{1}{2}
(B) \dfrac{1}{\sqrt{6}}
(C) \sqrt{\dfrac{2}{3}}
(D) \dfrac{1}{\sqrt{3}}
Click to View Answer
Correct Answer: [Insert Correct Option]
17. Let the position vectors of two points P and Q be 3\hat{i} - \hat{j} + 2\hat{k} and \hat{i} + 2\hat{j} - 4\hat{k}, respectively. Let R and S be two points such that the direction ratios of lines PR and QS are (4, -1, 2) and (-2, 1, -2), respectively. Let lines PR and QS intersect at T. If the vector \overrightarrow{TA} is perpendicular to both \overrightarrow{PR} and \overrightarrow{QS} and the length of vector \overrightarrow{TA} is \sqrt{5} units, then the modulus of a position vector of A is:
(A) \sqrt{482}
(B) \sqrt{171}
(C) \sqrt{5}
(D) \sqrt{227}
Click to View Answer
Correct Answer: [Insert Correct Option]
18. If the two lines \ell_1: \dfrac{x - 2}{3} = \dfrac{y + 1}{-2}, z = 2 and \ell_2: \dfrac{x - 1}{1} = \dfrac{2y + 3}{\alpha} = \dfrac{z + 5}{2} are perpendicular, then an angle between the lines \ell_2 and \ell_3: \dfrac{x - 1}{3} = \dfrac{2y - 1}{-4} = \dfrac{z}{4} is:
(A) \cos^{-1} \left( \dfrac{29}{4} \right)
(B) \sec^{-1} \left( \dfrac{29}{4} \right)
(C) \cos^{-1} \left( \dfrac{2}{29} \right)
(D) \cos^{-1} \left( \dfrac{2}{\sqrt{29}} \right)
Click to View Answer
Correct Answer: [Insert Correct Option]
19. If two straight lines whose direction cosines are given by the relations l + m - n = 0, 3l^2 + m^2 + cnl = 0 are parallel, then the positive value of c is:
(A) 6
(B) 4
(C) 3
(D) 2
Click to View Answer
Correct Answer: [Insert Correct Option]
20. If the length of the perpendicular drawn from the point P(a, 4, 2), a > 0, on the line \dfrac{x + 1}{2} = \dfrac{y - 3}{3} = \dfrac{z - 1}{-1} is 2\sqrt{6} units and Q(\alpha_1, \alpha_2, \alpha_3) is the image of the point P in this line, then a + \sum_{i=1}^3 \alpha_i is equal to:
(A) 7
(B) 8
(C) 12
(D) 14
Click to View Answer
Correct Answer: [Insert Correct Option]
21. Let z = \dfrac{1 - i\sqrt{3}}{2}, i = \sqrt{-1}, then the least value of 21 + \left( z + \dfrac{1}{z} \right)^3 + \left( z^2 + \dfrac{1}{z^2} \right)^3 + \left( z^3 + \dfrac{1}{z^3} \right)^3 + \cdots + \left( z^{21} + \dfrac{1}{z^{21}} \right)^3 is:
Click to View Answer
Correct Answer: [Insert Correct Answer]
22. If |z| = 1, then \left| 3 + \dfrac{1}{z} \right|^2 + |3 - z|^2 is equal to?
Click to View Answer
Correct Answer: [Insert Correct Answer]
23. Value of \left| \sum_{i=1}^4 z_i^4 \right| + \sum_{i=1}^4 z_i^5 is equal to:
Click to View Answer
Correct Answer: [Insert Correct Answer]
24. If the shortest distance between the lines \vec{r}_1 = \alpha \hat{i} + 2\hat{j} + 2\hat{k} + \lambda (\hat{i} - 2\hat{j} + 2\hat{k}), \quad \lambda \in \mathbb{R}, \quad \alpha > 0 and \vec{r}_2 = -4\hat{i} - \hat{k} + \mu (3\hat{i} - 2\hat{j} - 2\hat{k}), \quad \mu \in \mathbb{R} is 9, then \alpha is equal to:
Click to View Answer
Correct Answer: [Insert Correct Answer]
25. Let a, b \in \mathbb{R}. If the mirror image of the point P(a, 6, 9) with respect to the line \dfrac{x - 3}{7} = \dfrac{y - 2}{5} = \dfrac{z - 1}{-9} is (20, b, -a - 9), then |a + b| is equal to:
Click to View Answer
Correct Answer: [Insert Correct Answer]