IIT JEE MAIN 2025 January Shift Session-1

  1. The number of non-empty equivalence relations on the set \{1,2,3\} is:
    (1) 6
    (2) 7
    (3) 5
    (4) 4
  2. Let f: \mathbb{R} \rightarrow \mathbb{R} be a twice differentiable function such that f(x+y) = f(x) f(y) for all x, y \in \mathbb{R}. If f'(0) = 4a and f satisfies f''(x) - 3a f'(x) - f(x) = 0, a > 0, then the area of the region R = \{(x, y) \mid 0 \leq y \leq f(ax), 0 \leq x \leq 2\} is:
    (1) e^2 - 1
    (2) e^4 + 1
    (3) e^4 - 1
    (4) e^2 + 1
  3. Let the triangle PQR be the image of the triangle with vertices (1,3), (3,1), and (2,4) in the line x + 2y = 2. If the centroid of \triangle PQR is the point (\alpha, \beta), then 15(\alpha - \beta) is equal to:
    (1) 24
    (2) 19
    (3) 21
    (4) 22
  4. Let z_1, z_2, z_3 be three complex numbers on the circle |z| = 1 with \arg(z_1) = -\frac{\pi}{4}, \arg(z_2) = 0, and \arg(z_3) = \frac{\pi}{4}. If \left| z_1 \overline{z_2} + z_2 \overline{z_3} + z_3 \overline{z_1} \right|^2 = \alpha + \beta \sqrt{2}, \alpha, \beta \in \mathbb{Z}, then the value of \alpha^2 + \beta^2 is:
    (1) 24
    (2) 41
    (3) 31
    (4) 29
  5. Using the principal values of the inverse trigonometric functions, the sum of the maximum and minimum values of 16 \left( \left( \sec^{-1} x \right)^2 + \left( \csc^{-1} x \right)^2 \right) is:
    (1) 24 \pi^2
    (2) 18 \pi^2
    (3) 31 \pi^2
    (4) 22 \pi^2
  6. A coin is tossed three times. Let X denote the number of times a tail follows a head. If \mu and \sigma^2 denote the mean and variance of X, then the value of 64 \left( \mu + \sigma^2 \right) is:
    (1) 51
    (2) 48
    (3) 32
    (4) 64
  7. Let a_1, a_2, a_3, \ldots be a geometric progression of increasing positive terms. If a_1 a_5 = 28 and a_2 + a_4 = 29, then a_6 is equal to:
    (1) 628
    (2) 526
    (3) 784
    (4) 812
  8. Let L_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4} and L_2: \frac{x-2}{3} = \frac{y-4}{4} = \frac{z-5}{5} be two lines. Then which of the following points lies on the line of the shortest distance between L_1 and L_2?
    (1) \left( -\frac{5}{3}, -7, 1 \right)
    (2) \left( 2, 3, \frac{1}{3} \right)
    (3) \left( \frac{8}{3}, -1, \frac{1}{3} \right)
    (4) \left( \frac{14}{3}, -3, \frac{22}{3} \right)
  9. The product of all solutions of the equation e^{5 \left( \log_e x \right)^2 + 3} = x^8, x > 0, is:
    (1) e^{8/5}
    (2) e^{6/5}
    (3) e^2
    (4) e
  10. If \sum_{r=1}^n T_r = \frac{(2n-1)(2n+1)(2n+3)(2n+5)}{64}, then \lim_{n \to \infty} \sum_{r=1}^n \left( \frac{1}{T_r} \right) is equal to:
    (1) 1
    (2) 0
    (3) \frac{2}{3}
    (4) \frac{1}{3}
  11. From all the English alphabets, five letters are chosen and arranged in alphabetical order. The total number of ways in which the middle letter is ‘M’ is:
    (1) 14950
    (2) 6084
    (3) 4356
    (4) 5148
  12. Let x = x(y) be the solution of the differential equation y^2 dx + \left( x - \frac{1}{y} \right) dy = 0. If x(1) = 1, then x\left( \frac{1}{2} \right) is:
    (1) \frac{1}{2} + e
    (2) \frac{3}{2} + e
    (3) 3 - e
    (4) 3 + e
  13. Let the parabola y = x^2 + p x - 3 meet the coordinate axes at points P, Q, and R. If the circle C with center at (-1, -1) passes through points P, Q, and R, then the area of \triangle PQR is:
    (1) 4
    (2) 6
    (3) 7
    (4) 5
  14. A circle C of radius 2 lies in the second quadrant and touches both coordinate axes. Let r be the radius of a circle with center at (2, 5) that intersects circle C at exactly two points. If the set of all possible values of r is the interval (\alpha, \beta), then 3 \beta - 2 \alpha is equal to:
    (1) 15
    (2) 14
    (3) 12
    (4) 10
  15. Let f(x) = 7 \tan^8 x + 7 \tan^6 x - 3 \tan^4 x - 3 \tan^2 x, I_1 = \int_{0}^{\pi/4} f(x) \, dx, and I_2 = \int_{0}^{\pi/4} x f(x) \, dx. Then 7 I_1 + 12 I_2 is equal to:
    (1) 2 \pi
    (2) \pi
    (3) 1
    (4) 2
  16. Let f(x) be a real differentiable function such that f(0) = 1 and f(x+y) = f(x) f'(y) + f'(x) f(y) for all x, y \in \mathbb{R}. Then \sum_{n=1}^{100} \log_e f(n) is equal to:
    (1) 2384
    (2) 2525
    (3) 5220
    (4) 2406
  17. Let A = \{1, 2, 3, \ldots, 10\} and B = \left\{ \frac{m}{n} : m, n \in A, m < n \text{ and } \gcd(m, n) = 1 \right\}. Then n(B) is equal to:
    (1) 31
    (2) 36
    (3) 37
    (4) 29
  18. The area of the region inside the circle (x - 2 \sqrt{3})^2 + y^2 = 12 and outside the parabola y^2 = 2 \sqrt{3} x is:
    (1) 6 \pi - 8
    (2) 3 \pi - 8
    (3) 6 \pi - 16
    (4) 3 \pi + 8
  19. Two balls are selected at random one by one without replacement from a bag containing 4 white and 6 black balls. If the probability that the first selected ball is black, given that the second selected ball is also black, is \frac{m}{n}, where \gcd(m, n) = 1, then m + n is equal to:
    (1) 14
    (2) 4
    (3) 11
    (4) 13
  20. Let the foci of a hyperbola be (1, 14) and (1, -12). If it passes through the point (1, 6), then the length of its latus rectum is:
    (1) \frac{25}{6}
    (2) \frac{24}{5}
    (3) \frac{288}{5}
    (4) \frac{144}{5}
  21. Let the function f(x) = \begin{cases} -3 a x^2 - 2, & x  1, b \in \mathbb{R}. If the area of the region enclosed by y = f(x) and the line y = -20 is \alpha + \beta \sqrt{3}, \alpha, \beta \in \mathbb{Z}, then the value of \alpha + \beta is.
  22. If \sum_{r=0}^{5} \frac{{11 \choose 2r+1}}{2r+2} = \frac{m}{n}, \gcd(m, n) = 1, then m - n is equal to.
  23. Let A be a square matrix of order 3 such that \det(A) = -2 and \det(3 \operatorname{adj}(-6 \operatorname{adj}(3 A))) = 2^{m+n} \cdot 3^{mn}, m > n. Then 4 m + 2 n is equal to.
  24. Let L_1: \frac{x-1}{3} = \frac{y-1}{-1} = \frac{z+1}{0} and L_2: \frac{x-2}{2} = \frac{y}{0} = \frac{z+4}{\alpha}, \alpha \in \mathbb{R}, be two lines that intersect at point B. If P is the foot of the perpendicular from point A(1, 1, -1) on L_2, then the value of 26 \alpha (PB)^2 is.
  25. Let \vec{c} be the projection vector of \vec{b} = \lambda \hat{i} + 4 \hat{k}, \lambda > 0, on the vector \vec{a} = \hat{i} + 2 \hat{j} + 2 \hat{k}. If |\vec{a} + \vec{c}| = 7, then the area of the parallelogram formed by vectors \vec{b} and \vec{c} is.
  26. Let \alpha, \beta, \gamma, \delta be the coefficients of x^7, x^5, x^3, x respectively in the expansion of \left( x + \sqrt{x^3 - 1} \right)^5 + \left( x - \sqrt{x^3 - 1} \right)^5, x > 1. If u and v satisfy the equations \alpha u + \beta v = 18, \gamma u + \delta v = 20, then u + v equals:
    (1) 5
    (2) 4
    (3) 3
    (4) 8
  27. In a group of 3 girls and 4 boys, there are two boys B_1 and B_2. The number of ways in which these girls and boys can stand in a queue such that all girls stand together, all boys stand together, but B_1 and B_2 are not adjacent to each other, is:
    (1) 144
    (2) 72
    (3) 96
    (4) 120
  28. Let P(4, 4 \sqrt{3}) be a point on the parabola y^2 = 4 a x and PQ be a focal chord of the parabola. If M and N are the feet of perpendiculars from P and Q respectively on the directrix, then the area of quadrilateral PQMN is equal to:
    (1) \frac{263 \sqrt{3}}{8}
    (2) 17 \sqrt{3}
    (3) \frac{343 \sqrt{3}}{8}
    (4) \frac{34 \sqrt{3}}{3}
  29. For a 3 \times 3 matrix M, let \operatorname{trace}(M) denote the sum of all diagonal elements. Let A be a 3 \times 3 matrix such that |A| = \frac{1}{2} and \operatorname{trace}(A) = 3. If B = \operatorname{adj}(\operatorname{adj}(2 A)), then |B| + \operatorname{trace}(B) equals:
    (1) 56
    (2) 132
    (3) 174
    (4) 280
  30. Suppose the number of terms in an arithmetic progression is 2k, k \in \mathbb{N}. If the sum of all odd terms is 40, the sum of all even terms is 55, and the last term exceeds the first term by 27, then k is equal to:
    (1) 5
    (2) 8
    (3) 6
    (4) 4
  31. Let a line pass through points P(-2, -1, 3) and Q, and be parallel to vector 3 \hat{i} + 2 \hat{j} + 2 \hat{k}. If the distance of point Q from point R(1, 3, 3) is 5, then the square of the area of \triangle PQR is equal to:
    (1) 136
    (2) 140
    (3) 144
    (4) 148
  32. If \lim_{x \to \infty} \left( \left( \frac{e}{1-e} \right) \left( \frac{1}{e} - \frac{x}{1+x} \right) \right)^x = \alpha, then \frac{\log_e \alpha}{1 + \log_e \alpha} equals:
    (1) e
    (2) e^{-2}
    (3) e^2
    (4) e^{-1}
  33. Let f(x) = \int_{0}^{x^2} \frac{t^2 - 8 t + 15}{e^t} \, dt, x \in \mathbb{R}. Then the numbers of local maximum and local minimum points of f, respectively, are:
    (1) 2 and 3
    (2) 3 and 2
    (3) 1 and 3
    (4) 2 and 2
  34. The perpendicular distance of the line \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+3}{2} from point P(2, -10, 1) is:
    (1) 6
    (2) 5 \sqrt{2}
    (3) 3 \sqrt{5}
    (4) 4 \sqrt{3}
  35. If x = f(y) is the solution of the differential equation \left( 1 + y^2 \right) + \left( x - 2 e^{\tan^{-1} y} \right) \frac{dy}{dx} = 0, y \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right), with f(0) = 1, then f\left( \frac{1}{\sqrt{3}} \right) is equal to:
    (1) e^{\pi/4}
    (2) e^{\pi/12}
    (3) e^{\pi/3}
    (4) e^{\pi/6}
  36. If \int e^x \left( \frac{x \sin^{-1} x}{\sqrt{1-x^2}} + \frac{\sin^{-1} x}{(1-x^2)^{3/2}} + \frac{x}{1-x^2} \right) dx = g(x) + C, where C is the constant of integration, then g\left( \frac{1}{2} \right) equals:
    (1) \frac{\pi}{6} \sqrt{\frac{e}{2}}
    (2) \frac{\pi}{4} \sqrt{\frac{e}{2}}
    (3) \frac{\pi}{6} \sqrt{\frac{e}{3}}
    (4) \frac{\pi}{4} \sqrt{\frac{e}{3}}
  37. Let \alpha_\theta and \beta_\theta be the distinct roots of 2 x^2 + (\cos \theta) x - 1 = 0, \theta \in (0, 2 \pi). If m and M are the minimum and maximum values of \alpha_\theta^4 + \beta_\theta^4, then 16 (M + m) equals:
    (1) 24
    (2) 25
    (3) 27
    (4) 17
  38. Let A = \{1, 2, 3, 4\} and B = \{1, 4, 9, 16\}. Then the number of many-one functions f: A \to B such that 1 \in f(A) is equal to:
    (1) 127
    (2) 151
    (3) 163
    (4) 139
  39. If the system of linear equations x + y + 2 z = 6, 2 x + 3 y + a z = a + 1, -x - 3 y + b z = 2 b, where a, b \in \mathbb{R}, has infinitely many solutions, then 7 a + 3 b is equal to:
    (1) 9
    (2) 12
    (3) 16
    (4) 22
  40. Let \vec{a} and \vec{b} be two unit vectors with an angle of \frac{\pi}{3} between them. If \lambda \vec{a} + 2 \vec{b} and 3 \vec{a} - \lambda \vec{b} are perpendicular, then the number of values of \lambda in [-1, 3] is:
    (1) 3
    (2) 2
    (3) 1
    (4) 0
  41. Let E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b, and H: \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1. Let the distance between the foci of E and H be 2 \sqrt{3}. If a - A = 2, and the ratio of the eccentricities of E and H is \frac{1}{3}, then the sum of the lengths of their latus rectums is equal to:
    (1) 10
    (2) 7
    (3) 8
    (4) 9
  42. If A and B are two events such that P(A \cap B) = 0.1, and P(A \mid B) and P(B \mid A) are the roots of 12 x^2 - 7 x + 1 = 0, then \frac{P(\overline{A} \cup \overline{B})}{P(\overline{A} \cap \overline{B})} is:
    (1) \frac{5}{3}
    (2) \frac{4}{3}
    (3) \frac{9}{4}
    (4) \frac{7}{4}
  43. The sum of all values of \theta \in [0, 2 \pi] satisfying 2 \sin^2 \theta = \cos 2 \theta and 2 \cos^2 \theta = 3 \sin \theta is:
    (1) \frac{\pi}{2}
    (2) 4 \pi
    (3) \frac{5 \pi}{6}
    (4) \pi
  44. Let the curve z (1 + i) + \overline{z} (1 - i) = 4, z \in \mathbb{C}, divide the region |z - 3| \leq 1 into two parts of areas \alpha and \beta. Then |\alpha - \beta| equals:
    (1) 1 + \frac{\pi}{2}
    (2) 1 + \frac{\pi}{3}
    (3) 1 + \frac{\pi}{4}
    (4) 1 + \frac{\pi}{6}
  45. The area of the region enclosed by the curves y = x^2 - 4 x + 4 and y^2 = 16 - 8 x is:
    (1) \frac{8}{3}
    (2) \frac{4}{3}
    (3) 5
    (4) 8
  46. Let y = f(x) be the solution of the differential equation \frac{dy}{dx} + \frac{x y}{x^2 - 1} = \frac{x^6 + 4 x}{\sqrt{1 - x^2}}, -1 < x < 1, such that f(0) = 0. If 6 \int_{-1/2}^{1/2} f(x) \, dx = 2 \pi - \alpha, then \alpha^2 is equal to.
  47. Let A(6, 8), B(10 \cos \alpha, -10 \sin \alpha), and C(-10 \sin \alpha, 10 \cos \alpha) be the vertices of a triangle. If L(a, 9) and G(h, k) are its orthocenter and centroid, respectively, then 5 a - 3 h + 6 k + 100 \sin 2 \alpha is equal to.
  48. Let the distance between two parallel lines be 5 units, and a point P lie between the lines at a unit distance from one of them. An equilateral triangle PQR is formed such that Q lies on one of the parallel lines, while R lies on the other. Then (QR)^2 is equal to.
  49. If \sum_{r=1}^{30} \frac{r^2 \left( {30 \choose r} \right)^2}{{30 \choose r-1}} = \alpha \times 2^{29}, then \alpha is equal to.
  50. Let A = \{1, 2, 3\}. The number of relations on A, containing (1, 2) and (2, 3), which are reflexive and transitive but not symmetric, is.
  51. The value of \int_{e^2}^{e^4} \frac{1}{x} \left( \frac{e^{\left( \left( \log_e x \right)^2 + 1 \right)^{-1}}}{e^{\left( \left( \log_e x \right)^2 + 1 \right)^{-1}} + e^{\left( \left( 6 - \log_e x \right)^2 + 1 \right)^{-1}}} \right) dx is:
    (1) \log_e 2
    (2) 2
    (3) 1
    (4) e^2
  52. Let I(x) = \int \frac{dx}{(x - 11)^{\frac{11}{13}} (x + 15)^{\frac{15}{13}}}. If I(37) - I(24) = \frac{1}{4} \left( \frac{1}{b^{\frac{1}{13}}} - \frac{1}{c^{\frac{1}{13}}} \right), b, c \in \mathbb{N}, then 3 (b + c) is equal to:
    (1) 40
    (2) 39
    (3) 22
    (4) 26
  53. If the function f(x) = \begin{cases} \frac{2}{x} \left\{ \sin (k_1 + 1) x + \sin (k_2 - 1) x \right\}, & x  0 \end{cases} is continuous at x = 0, then k_1^2 + k_2^2 is equal to:
    (1) 8
    (2) 20
    (3) 5
    (4) 10
  54. If the line 3 x - 2 y + 12 = 0 intersects the parabola 4 y = 3 x^2 at points A and B, then at the vertex of the parabola, the line segment AB subtends an angle equal to:
    (1) \tan^{-1} \left( \frac{11}{9} \right)
    (2) \frac{\pi}{2} - \tan^{-1} \left( \frac{3}{2} \right)
    (3) \tan^{-1} \left( \frac{4}{5} \right)
    (4) \tan^{-1} \left( \frac{9}{7} \right)
  55. Let a curve y = f(x) pass through the points (0, 5) and \left( \log_e 2, k \right). If the curve satisfies the differential equation 2 (3 + y) e^{2 x} dx - \left( 7 + e^{2 x} \right) dy = 0, then k is equal to:
    (1) 16
    (2) 8
    (3) 32
    (4) 4
  56. Let f(x) = \log_e x and g(x) = \frac{x^4 - 2 x^3 + 3 x^2 - 2 x + 2}{2 x^2 - 2 x + 1}. Then the domain of f \circ g is:
    (1) \mathbb{R}
    (2) (0, \infty)
    (3) [0, \infty)
    (4) [1, \infty)
  57. Let the arc AC of a circle subtend a right angle at the center O. If point B on arc AC divides the arc such that \frac{\text{length of arc } AB}{\text{length of arc } BC} = \frac{1}{5}, and \overrightarrow{OC} = \alpha \overrightarrow{OA} + \beta \overrightarrow{OB}, then \alpha = \sqrt{2} (\sqrt{3} - 1) \beta is equal to:
    (1) 2 - \sqrt{3}
    (2) 2 \sqrt{3}
    (3) 5 \sqrt{3}
    (4) 2 + \sqrt{3}
  58. If the first term of an arithmetic progression is 3 and the sum of its first four terms is equal to one-fifth of the sum of the next four terms, then the sum of the first 20 terms is equal to:
    (1) -1200
    (2) -1080
    (3) -1020
    (4) -120
  59. Let P be the foot of the perpendicular from point Q(10, -3, -1) on the line \frac{x-3}{7} = \frac{y-2}{-1} = \frac{z+1}{-2}. Then the area of the right-angled triangle PQR, where R is the point (3, -2, 1), is:
    (1) 9 \sqrt{15}
    (2) \sqrt{30}
    (3) 8 \sqrt{15}
    (4) 3 \sqrt{30}
  60. Let \left| \frac{\overline{z} - i}{2 \overline{z} + i} \right| = \frac{1}{3}, z \in \mathbb{C}, be the equation of a circle with center at C. If the area of the triangle with vertices at (0, 0), C, and (\alpha, 0) is 11 square units, then \alpha^2 equals:
    (1) 100
    (2) 50
    (3) \frac{121}{25}
    (4) \frac{81}{25}
  61. Let R = \{(1, 2), (2, 3), (3, 3)\} be a relation defined on the set \{1, 2, 3, 4\}. Then the minimum number of elements needed to be added to R so that R becomes an equivalence relation is:
    (1) 10
    (2) 8
    (3) 9
    (4) 7
  62. The number of words that can be formed using all the letters of the word “DAUGHTER” so that all vowels never come together is:
    (1) 34000
    (2) 37000
    (3) 36000
    (4) 35000
  63. Let the area of a \triangle PQR with vertices P(5, 4), Q(-2, 4), and R(a, b) be 35 square units. If its orthocenter and centroid are O\left( 2, \frac{14}{5} \right) and C(c, d), respectively, then c + 2 d is equal to:
    (1) \frac{7}{3}
    (2) 3
    (3) 2
    (4) \frac{8}{3}
  64. If \frac{\pi}{2} \leq x \leq \frac{3 \pi}{4}, then \cos^{-1} \left( \frac{12}{13} \cos x + \frac{5}{13} \sin x \right) is equal to:
    (1) x - \tan^{-1} \frac{4}{3}
    (2) x - \tan^{-1} \frac{5}{12}
    (3) x + \tan^{-1} \frac{4}{5}
    (4)🇼🇵🇼🇵x + \tan^{-1} \frac{5}{12}
  65. The value of \left( \sin 70^\circ \right) \left( \cot 10^\circ \cot 70^\circ - 1 \right) is:
    (1) 1
    (2) 0
    (3) \frac{3}{2}
    (4) \frac{2}{3}
  66. Marks obtained by all students of class 12 are presented in a frequency distribution with classes of equal width. Let the median of this grouped data be 14 with median class interval 12-18 and median class frequency 12. If the number of students whose marks are less than 12 is 18, then the total number of students is:
    (1) 48
    (2) 44
    (3) 40
    (4) 52
  67. Let the position vectors of vertices A, B, and C of a tetrahedron ABCD be \hat{i} + 2 \hat{j} + \hat{k}, \hat{i} + 3 \hat{j} - 2 \hat{k}, and 2 \hat{i} + \hat{j} - \hat{k}, respectively. The altitude from vertex D to the opposite face ABC meets the median line segment through A of triangle ABC at point E. If the length of AD is \frac{\sqrt{110}}{3} and the volume of the tetrahedron is \frac{\sqrt{805}}{6 \sqrt{2}}, then the position vector of E is:
    (1) \frac{1}{2} (\hat{i} + 4 \hat{j} + 7 \hat{k})
    (2) \frac{1}{12} (7 \hat{i} + 4 \hat{j} + 3 \hat{k})
    (3) \frac{1}{6} (12 \hat{i} + 12 \hat{j} + \hat{k})
    (4) \frac{1}{6} (7 \hat{i} + 12 \hat{j} + \hat{k})
  68. If A, B, and \operatorname{adj}(A^{-1}) + \operatorname{adj}(B^{-1}) are non-singular matrices of the same order, then the inverse of A \left( \operatorname{adj}(A^{-1}) + \operatorname{adj}(B^{-1}) \right)^{-1} B is equal to:
    (1) AB^{-1} + A^{-1} B
    (2) \operatorname{adj}(B^{-1}) + \operatorname{adj}(A^{-1})
    (3) \frac{1}{|AB|} (\operatorname{adj}(B) + \operatorname{adj}(A))
    (4) \frac{AB^{-1}}{|A|} + \frac{BA^{-1}}{|B|}
  69. If the system of equations (\lambda - 1) x + (\lambda - 4) y + \lambda z = 5, \lambda x + (\lambda - 1) y + (\lambda - 4) z = 7, (\lambda + 1) x + (\lambda + 2) y - (\lambda + 2) z = 9 has infinitely many solutions, then \lambda^2 + \lambda is equal to:
    (1) 10
    (2) 12
    (3) 6
    (4) 20
  70. One die has two faces marked 1, two faces marked 2, one face marked 3, and one face marked 4. Another die has one face marked 1, two faces marked 2, two faces marked 3, and one face marked 4. The probability of getting the sum of numbers to be 4 or 5 when both dice are thrown together is:
    (1) \frac{1}{2}
    (2) \frac{3}{5}
    (3) \frac{2}{3}
    (4) \frac{4}{9}
  71. If the area of the larger portion bounded between the curves x^2 + y^2 = 25 and y = |x - 1| is \frac{1}{4} (b \pi + c), b, c \in \mathbb{N}, then b + c is equal to.
  72. The sum of all rational terms in the expansion of \left( 1 + 2^{1/3} + 3^{1/2} \right)^6 is equal to.
  73. Let the circle C touch the line x - y + 1 = 0, have the center on the positive x-axis, and cut off a chord of length \frac{4}{\sqrt{13}} along the line -3 x + 2 y = 1. Let H be the hyperbola \frac{x^2}{\alpha^2} - \frac{y^2}{\beta^2} = 1, whose one of the foci is the center of C and the length of the transverse axis is the diameter of C. Then 2 \alpha^2 + 3 \beta^2 is equal to.
  74. If the set of all values of a for which the equation 5 x^3 - 15 x - a = 0 has three distinct real roots is the interval (\alpha, \beta), then \beta - 2 \alpha is equal to.
  75. If the equation a (b - c) x^2 + b (c - a) x + c (a - b) = 0 has equal roots, where a + c = 15 and b = \frac{36}{5}, then a^2 + c^2 is equal to.
  76. If in the expansion of (1 + x)^p (1 - x)^q, the coefficients of x and x^2 are 1 and -2, respectively, then p^2 + q^2 is equal to:
    (1) 8
    (2) 18
    (3) 13
    (4) 20
  77. Let A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x + y| \geq 3\} and B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : |x| + |y| \leq 3\}. If C = \{(x, y) \in A \cap B : x = 0 \text{ or } y = 0\}, then \sum_{(x, y) \in C} |x + y| is:
    (1) 15
    (2) 18
    (3) 24
    (4) 12
  78. The system of equations x + y + z = 6, x + 2 y + 5 z = 9, x + 5 y + \lambda z = \mu has no solution if:
    (1) \lambda = 17, \mu \neq 18
    (2) \lambda \neq 17, \mu \neq 18
    (3) \lambda = 15, \mu \neq 17
    (4) \lambda = 17, \mu = 18
  79. Let \int x^3 \sin x \, dx = g(x) + C, where C is the constant of integration. If 8 \left( g\left( \frac{\pi}{2} \right) + g'\left( \frac{\pi}{2} \right) \right) = \alpha \pi^3 + \beta \pi^2 + \gamma, \alpha, \beta, \gamma \in \mathbb{Z}, then \alpha + \beta - \gamma equals:
    (1) 55
    (2) 47
    (3) 48
    (4) 62
  80. A rod of length eight units moves such that its ends A and B always lie on the lines x - y + 2 = 0 and y + 2 = 0, respectively. If the locus of the point P that divides the rod AB internally in the ratio 2:1 is 9 \left( x^2 + \alpha y^2 + \beta x y + \gamma x + 28 y \right) - 76 = 0, then \alpha - \beta - \gamma is equal to:
    (1) 24
    (2) 23
    (3) 21
    (4) 22
  81. The distance of the line \frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4} from point (1, 4, 0) along the line \frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{3} is:
    (1) \sqrt{17}
    (2) \sqrt{14}
    (3) \sqrt{15}
    (4) \sqrt{13}
  82. Let point A divide the line segment joining points P(-1, -1, 2) and Q(5, 5, 10) internally in the ratio r:1 (r > 0). If O is the origin and (\overrightarrow{OQ} \cdot \overrightarrow{OA}) - \frac{1}{5} |\overrightarrow{OP} \times \overrightarrow{OA}|^2 = 10, then the value of r is:
    (1) 14
    (2) 3
    (3) \sqrt{7}
    (4) 7
  83. If the area of the region \{(x, y) : -1 \leq x \leq 1, 0 \leq y \leq a + e^{|x|} - e^{-x}, a > 0\} is \frac{e^2 + 8 e + 1}{e}, then the value of a is:
    (1) 7
    (2) 6
    (3) 8
    (4) 5
  84. A spherical chocolate ball has a layer of ice-cream of uniform thickness around it. When the thickness of the ice-cream layer is 1 cm, the ice-cream melts at the rate of 81 \, \text{cm}^3/\text{min} and the thickness of the ice-cream layer decreases at the rate of \frac{1}{4 \pi} \, \text{cm}/\text{min}. The surface area (in \text{cm}^2) of the chocolate ball (without the ice-cream layer) is:
    (1) 225 \pi
    (2) 128 \pi
    (3) 196 \pi
    (4) 256 \pi
  85. A board has 16 squares as shown in the figure. Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is:
    (1) \frac{4}{5}
    (2) \frac{7}{10}
    (3) \frac{3}{5}
    (4) \frac{23}{30}
  86. Let x = x(y) be the solution of the differential equation y = \left( x - y \frac{dx}{dy} \right) \sin \left( \frac{x}{y} \right), y > 0, and x(1) = \frac{\pi}{2}. Then \cos (x(2)) is equal to:
    (1) 1 - 2 \left( \log_e 2 \right)^2
    (2) 2 \left( \log_e 2 \right)^2 - 1
    (3) 2 \left( \log_e 2 \right) - 1
    (4) 1 - 2 \left( \log_e 2 \right)
  87. Let the range of the function f(x) = 6 + 16 \cos x \cdot \cos \left( \frac{\pi}{3} - x \right) \cdot \cos \left( \frac{\pi}{3} + x \right) \sin 3 x \cdot \cos 6 x, x \in \mathbb{R}, be [\alpha, \beta]. Then the distance of the point (\alpha, \beta) from the line 3 x + 4 y + 12 = 0 is:
    (1) 11
    (2) 8
    (3) 10
    (4) 9
  88. Let the shortest distance from (a, 0), a > 0, to the parabola y^2 = 4 x be 4. Then the equation of the circle passing through point (a, 0) and the focus of the parabola, and having its center on the axis of the parabola, is:
    (1) x^2 + y^2 - 6 x + 5 = 0
    (2) x^2 + y^2 - 4 x + 3 = 0
    (3) x^2 + y^2 - 10 x + 9 = 0
    (4) x^2 + y^2 - 8 x + 7 = 0
  89. Let X = \mathbb{R} \times \mathbb{R}. Define a relation R on X as (a_1, b_1) R (a_2, b_2) \Leftrightarrow b_1 = b_2.
    Statement-I: R is an equivalence relation.
    Statement-II: For some (a, b) \in X, the set S = \{(x, y) \in X : (x, y) R (a, b)\} represents a line parallel to y = x.
    Choose the correct answer:
    (1) Both Statement-I and Statement-II are false.
    (2) Statement-I is true but Statement-II is false.
    (3) Both Statement-I and Statement-II are true.
    (4) Statement-I is false but Statement-II is true.
  90. The length of the chord of the ellipse \frac{x^2}{4} + \frac{y^2}{2} = 1, whose midpoint is \left( 1, \frac{1}{2} \right), is:
    (1) \frac{2}{3} \sqrt{15}
    (2) \frac{5}{3} \sqrt{15}
    (3) \frac{1}{3} \sqrt{15}
    (4) \sqrt{15}
  91. Let A = [a_{ij}] be a 3 \times 3 matrix such that A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, A \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, and A \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, then a_{23} equals:
    (1) -1
    (2) 0
    (3) 2
    (4) 1
  92. The number of complex numbers z satisfying |z| = 1 and \left| \frac{z}{\overline{z}} + \frac{\overline{z}}{z} \right| = 1 is:
    (1) 6
    (2) 4
    (3) 10
    (4) 8
  93. If the square of the shortest distance between the lines \frac{x-2}{1} = \frac{y-1}{2} = \frac{z+3}{-3} and \frac{x+1}{2} = \frac{y+3}{4} = \frac{z+5}{-5} is \frac{m}{n}, where m, n are coprime numbers, then m + n is equal to:
    (1) 6
    (2) 9
    (3) 21
    (4) 14
  94. If I = \int_{0}^{\frac{\pi}{2}} \frac{\sin^{3/2} x}{\sin^{3/2} x + \cos^{3/2} x} \, dx, then \int_{0}^{21} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} \, dx equals:
    (1) \frac{\pi^2}{16}
    (2) \frac{\pi^2}{4}
    (3) \frac{\pi^2}{8}
    (4) \frac{\pi^2}{12}
  95. \lim_{x \to \infty} \frac{\left( 2 x^2 - 3 x + 5 \right) (3 x - 1)^{\frac{x}{2}}}{\left( 3 x^2 + 5 x + 4 \right) \sqrt{(3 x + 2)^x}} is equal to:
    (1) \frac{2}{\sqrt{3 e}}
    (2) \frac{2 e}{\sqrt{3}}
    (3) \frac{2 e}{3}
    (4) \frac{2}{3 \sqrt{e}}
  96. The number of ways 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together is.
  97. Let \alpha, \beta be the roots of x^2 - a x - b = 0 with \operatorname{Im}(\alpha) < \operatorname{Im}(\beta). Let P_n = \alpha^n - \beta^n. If P_3 = -5 \sqrt{7} i, P_4 = -3 \sqrt{7} i, P_5 = 11 \sqrt{7} i, and P_6 = 45 \sqrt{7} i, then |\alpha^4 + \beta^4| is equal to.
  98. The focus of the parabola y^2 = 4 x + 16 is the center of the circle C of radius 5. If the values of \lambda for which C passes through the point of intersection of the lines 3 x - y = 0 and x + \lambda y = 4 are \lambda_1 and \lambda_2, \lambda_1 < \lambda_2, then 12 \lambda_1 + 29 \lambda_2 is equal to.
  99. The variance of the numbers 8, 21, 34, 47, \ldots, 320 is.
  100. The roots of the quadratic equation 3 x^2 - p x + q = 0 are the 10th and 11th terms of an arithmetic progression with common difference \frac{3}{2}. If the sum of the first 11 terms of this arithmetic progression is 88, then q - 2 q is equal to.
  101. Let \vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k}, \vec{b} = 3 \hat{i} + \hat{j} - \hat{k}, and \vec{c} be three vectors such that \vec{c} is coplanar with \vec{a} and \vec{b}. If \vec{c} is perpendicular to \vec{b} and \vec{a} \cdot \vec{c} = 5, then |\vec{c}| is equal to:
    (1) \frac{1}{3 \sqrt{2}}
    (2) 18
    (3) 16
    (4) \sqrt{\frac{11}{6}}
  102. In I(m, n) = \int_{0}^{1} x^{m-1} (1 - x)^{n-1} \, dx, m, n > 0, then I(9, 14) + I(10, 13) is:
    (1) I(9, 1)
    (2) I(19, 27)
    (3) I(1, 13)
    (4) I(9, 13)
  103. Let f: \mathbb{R} - \{0\} \to \mathbb{R} be a function such that f(x) - 6 f\left( \frac{1}{x} \right) = \frac{35}{3 x} - \frac{5}{2}. If \lim_{x \to 0} \left( \frac{1}{\alpha x} + f(x) \right) = \beta, \alpha, \beta \in \mathbb{R}, then \alpha + 2 \beta is equal to:
    (1) 3
    (2) 5
    (3) 4
    (4) 6
  104. Let S_n = \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \ldots up to n terms. If the sum of the first six terms of an arithmetic progression with first term -p and common difference p is \sqrt{2026 S_{2025}}, then the absolute difference between the 20th and 15th terms of the arithmetic progression is:
    (1) 25
    (2) 90
    (3) 20
    (4) 45
  105. Let f(x) = \frac{2^{x+2} + 16}{2^{2 x + 1} + 2^{x + 4} + 32}. Then the value of 8 \left( f\left( \frac{1}{15} \right) + f\left( \frac{2}{15} \right) + \ldots + f\left( \frac{59}{15} \right) \right) is equal to:
    (1) 118
    (2) 92
    (3) 102
    (4) 108
  106. If \alpha and \beta are the roots of 2 z^2 - 3 z - 2 i = 0, where i = \sqrt{-1}, then 16 \cdot \operatorname{Re} \left( \frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}} \right) \cdot \operatorname{Im} \left( \frac{\alpha^{19} + \beta^{19} + \alpha^{11} + \beta^{11}}{\alpha^{15} + \beta^{15}} \right) is equal to:
    (1) 398
    (2) 312
    (3) 409
    (4) 441
  107. \lim_{x \to 0} \operatorname{cosec} x \left( \sqrt{2 \cos^2 x + 3 \cos x} - \sqrt{\cos^2 x + \sin x + 4} \right) is:
    (1) 0
    (2) \frac{1}{2 \sqrt{5}}
    (3) \frac{1}{\sqrt{15}}
    (4) -\frac{1}{2 \sqrt{5}}
  108. Let in a \triangle ABC, the length of side AC be 6, the vertex B be (1, 2, 3), and the vertices A, C lie on the line \frac{x-6}{3} = \frac{y-7}{2} = \frac{z-7}{-2}. Then the area (in sq. units) of \triangle ABC is:
    (1) 42
    (2) 21
    (3) 56
    (4) 17
  109. Let y = y(x) be the solution of the differential equation \left( x y - 5 x^2 \sqrt{1 + x^2} \right) dx + \left( 1 + x^2 \right) dy = 0, y(0) = 0. Then y(\sqrt{3}) is equal to:
    (1) \frac{5 \sqrt{3}}{2}
    (2) \sqrt{\frac{14}{3}}
    (3) 2 \sqrt{2}
    (4) \sqrt{\frac{15}{2}}
  110. Let the product of the focal distances of the point \left( \sqrt{3}, \frac{1}{2} \right) on the ellipse \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, (a > b), be \frac{7}{4}. Then the absolute difference of the eccentricities of two such ellipses is:
    (1) \frac{3 - 2 \sqrt{2}}{3 \sqrt{2}}
    (2) \frac{1 - \sqrt{3}}{\sqrt{2}}
    (3) \frac{3 - 2 \sqrt{2}}{2 \sqrt{3}}
    (4) \frac{1 - 2 \sqrt{2}}{\sqrt{3}}
  111. A and B alternately throw a pair of dice. A wins if he throws a sum of 5 before B throws a sum of 8, and B wins if he throws a sum of 8 before A throws a sum of 5. The probability that A wins if A makes the first throw is:
    (1) \frac{9}{17}
    (2) \frac{9}{19}
    (3) \frac{8}{17}
    (4) \frac{8}{19}
  112. Consider the region R = \left\{ (x, y) : x \leq y \leq 9 - \frac{11}{3} x^2, x \geq 0 \right\}. The area of the largest rectangle with sides parallel to the coordinate axes and inscribed in R is:
    (1) \frac{625}{111}
    (2) \frac{730}{119}
    (3) \frac{567}{121}
    (4) \frac{821}{123}
  113. The area of the region \left\{ (x, y) : x^2 + 4 x + 2 \leq y \leq |x + 2| \right\} is equal to:
    (1) 7
    (2) \frac{24}{5}
    (3) \frac{20}{3}
    (4) 5
  114. For statistical data x_1, x_2, \ldots, x_{10} of 10 values, a student obtained the mean as 5.5 and \sum_{i=1}^{10} x_i^2 = 371. He later found that he had noted two values incorrectly as 4 and 5, instead of the correct values 6 and 8, respectively. The variance of the corrected data is:
    (1) 7
    (2) 4
    (3) 9
    (4) 5
  115. Let circle C be the image of x^2 + y^2 - 2 x + 4 y - 4 = 0 in the line 2 x - 3 y + 5 = 0, and A be the point on C such that OA is parallel to the x-axis and A lies on the right-hand side of the center O of C. If B(\alpha, \beta), with \beta < 4, lies on C such that the length of arc AB is \frac{1}{6}^{\text{th}} of the perimeter of C, then \beta - \sqrt{3} \alpha is equal to:
    (1) 3
    (2) 3 + \sqrt{3}
    (3) 4 - \sqrt{3}
    (4) 4
  116. For some n \neq 10, let the coefficients of the 5th, 6th, and 7th terms in the binomial expansion of (1 + x)^{n+4} be in arithmetic progression. Then the largest coefficient in the expansion of (1 + x)^{n+4} is:
    (1) 70
    (2) 35
    (3) 20
    (4) 10
  117. The product of all rational roots of the equation \left( x^2 - 9 x + 11 \right)^2 - (x - 4)(x - 5) = 3 is equal to:
    (1) 14
    (2) 7
    (3) 28
    (4) 21
  118. Let the line passing through the point (-1, 2, 1) and parallel to the line \frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4} intersect the line \frac{x+2}{3} = \frac{y-3}{2} = \frac{z-4}{1} at point P. Then the distance of P from point Q(4, -5, 1) is:
    (1) 5
    (2) 10
    (3) 5 \sqrt{6}
    (4) 5 \sqrt{5}
  119. Let the lines 3 x - 4 y - \alpha = 0, 8 x - 11 y - 33 = 0, and 2 x - 3 y + \lambda = 0 be concurrent. If the image of the point (1, 2) in the line 2 x - 3 y + \lambda = 0 is \left( \frac{57}{13}, \frac{-40}{13} \right), then |\alpha \lambda| is equal to:
    (1) 84
    (2) 91
    (3) 113
    (4) 101
  120. If the system of equations 2 x - y + z = 4, 5 x + \lambda y + 3 z = 12, 100 x - 47 y + \mu z = 212 has infinitely many solutions, then \mu - 2 \lambda is equal to:
    (1) 56
    (2) 59
    (3) 55
    (4) 57
  121. Let f be a differentiable function such that 2 (x + 2)^2 f(x) - 3 (x + 2)^2 = 10 \int_{0}^{x} (t + 2) f(t) \, dt, x \geq 0. Then f(2) is equal to.
  122. If for some \alpha, \beta; \alpha \leq \beta, \alpha + \beta = 8, and \sec^2 \left( \tan^{-1} \alpha \right) + \csc^2 \left( \cot^{-1} \beta \right) = 36, then \alpha^2 + \beta is.
  123. The number of 3-digit numbers that are divisible by 2 and 3, but not divisible by 4 and 9, is.
  124. Let A be a 3 \times 3 matrix such that X^T A X = 0 for all nonzero 3 \times 1 matrices X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}. If A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ -5 \end{bmatrix}, A \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -8 \end{bmatrix}, and \det(\operatorname{adj}(2 (A + I))) = 2^\alpha 3^\beta 5^\gamma, \alpha, \beta, \gamma \in \mathbb{N}, then \alpha^2 + \beta^2 + \gamma^2 is.
  125. Let S = \{ p_1, p_2, \ldots, p_{10} \} be the set of the first ten prime numbers. Let A = S \cup P, where P is the set of all possible products of distinct elements of S. Then the number of all ordered pairs (x, y), x \in S, y \in A, such that x divides y, is.
  126. The equation of the chord of the ellipse \frac{x^2}{25} + \frac{y^2}{16} = 1, whose midpoint is (3, 1), is:
    (1) 48 x + 25 y = 169
    (2) 4 x + 122 y = 134
    (3) 25 x + 101 y = 176
    (4) 5 x + 16 y = 31
  127. The function f: (-\infty, \infty) \to (-\infty, 1), defined by f(x) = \frac{2^x - 2^{-x}}{2^x + 2^{-x}}, is:
    (1) One-one but not onto
    (2) Onto but not one-one
    (3) Both one-one and onto
    (4) Neither one-one nor onto
  128. If \alpha > \beta > \gamma > 0, then the expression \cot^{-1} \left\{ \beta + \frac{1 + \beta^2}{\alpha - \beta} \right\} + \cot^{-1} \left\{ \gamma + \frac{1 + \gamma^2}{\beta - \gamma} \right\} + \cot^{-1} \left\{ \alpha + \frac{1 + \alpha^2}{\gamma - \alpha} \right\} is equal to:
    (1) \frac{\pi}{2} - (\alpha + \beta + \gamma)
    (2) 3 \pi
    (3) 0
    (4) \pi
  129. Let f: (0, \infty) \to \mathbb{R} be a function that is differentiable at all points of its domain and satisfies x^2 f'(x) = 2 x f(x) + 3, with f(1) = 4. Then 2 f(2) is equal to:
    (1) 29
    (2) 19
    (3) 39
    (4) 23
  130. Let A = \left\{ x \in (0, \pi) - \left\{ \frac{\pi}{2} \right\} : \log_{\frac{2}{\pi}} |\sin x| + \log_{\frac{2}{\pi}} |\cos x| = 2 \right\} and B = \left\{ x \geq 0 : \sqrt{x} (\sqrt{x} - 4) - 3 |\sqrt{x} - 2| + 6 = 0 \right\}. Then n(A \cup B) is equal to:
    (1) 4
    (2) 2
    (3) 8
    (4) 6
  131. Let the position vectors of three vertices of a triangle be 4 \overrightarrow{p} + \overrightarrow{q} - 3 \overrightarrow{r}, -5 \overrightarrow{p} + \overrightarrow{q} + 2 \overrightarrow{r}, and 2 \overrightarrow{p} - \overrightarrow{q} + 2 \overrightarrow{r}. If the position vectors of the orthocenter and circumcenter of the triangle are \frac{\overrightarrow{p} + \overrightarrow{q} + \overrightarrow{r}}{4} and \alpha \overrightarrow{p} + \beta \overrightarrow{q} + \gamma \overrightarrow{r}, respectively, then \alpha + 2 \beta + 5 \gamma is equal to:
    (1) 3
    (2) 1
    (3) 6
    (4) 4
  132. Let [x] denote the greatest integer function, and let m and n be the numbers of points where the function f(x) = [x] + |x - 2|, -2 < x < 3, is not continuous and not differentiable, respectively. Then m + n is equal to:
    (1) 6
    (2) 9
    (3) 8
    (4) 7
  133. Let the point \left( \frac{11}{2}, \alpha \right) lie on or inside the triangle with sides x + y = 11, x + 2 y = 16, and 2 x + 3 y = 29. Then the product of the smallest and largest values of \alpha is equal to:
    (1) 22
    (2) 44
    (3) 33
    (4) 55
  134. In an arithmetic progression, if S_{40} = 1030 and S_{12} = 57, then S_{30} - S_{10} is equal to:
    (1) 510
    (2) 515
    (3) 525
    (4) 505
  135. If 7 = 5 + \frac{1}{7} (5 + \alpha) + \frac{1}{7^2} (5 + 2 \alpha) + \frac{1}{7^3} (5 + 3 \alpha) + \ldots \infty, then the value of \alpha is:
    (1) 1
    (2) \frac{6}{7}
    (3) 6
    (4) \frac{1}{7}
  136. If the system of equations x + 2 y - 3 z = 2, 2 x + \lambda y + 5 z = 5, 14 x + 3 y + \mu z = 33 has infinitely many solutions, then \lambda + \mu is equal to:
    (1) 13
    (2) 10
    (3) 11
    (4) 12
  137. Let (2, 3) be the largest open interval in which the function f(x) = 2 \log_e (x - 2) - x^2 + a x + 1 is strictly increasing, and (b, c) be the largest open interval in which the function g(x) = (x - 1)^3 (x + 2 - a)^2 is strictly decreasing. Then 100 (a + b - c) is equal to:
    (1) 280
    (2) 360
    (3) 420
    (4) 160
  138. Suppose A and B are the coefficients of the 30th and 12th terms, respectively, in the binomial expansion of (1 + x)^{2n-1}. If 2 A = 5 B, then n is equal to:
    (1) 22
    (2) 21
    (3) 20
    (4) 19
  139. Let \vec{a} = 3 \hat{i} - \hat{j} + 2 \hat{k}, \vec{b} = \vec{a} \times (\hat{i} - 2 \hat{k}), and \vec{c} = \vec{b} \times \hat{k}. Then the projection of \vec{c} - 2 \hat{j} on \vec{a} is:
    (1) 3 \sqrt{7}
    (2) \sqrt{14}
    (3) 2 \sqrt{14}
    (4) 2 \sqrt{7}
  140. For some a, b, let f(x) = \left| \begin{array}{ccc} a + \frac{\sin x}{x} & 1 & b \\ a & 1 + \frac{\sin x}{x} & b \\ a & 1 & b + \frac{\sin x}{x} \end{array} \right|, x \neq 0. If \lim_{x \to 0} f(x) = \lambda + \mu a + \nu b, then (\lambda + \mu + \nu)^2 is equal to:
    (1) 25
    (2) 9
    (3) 36
    (4) 16
  141. Group A consists of 7 boys and 3 girls, while group B consists of 6 boys and 5 girls. The number of ways 4 boys and 4 girls can be invited for a picnic if 5 of them must be from group A and the remaining 3 from group B is equal to:
    (1) 8575
    (2) 9100
    (3) 8925
    (4) 8750
  142. The area of the region enclosed by the curves y = e^x, y = |e^x - 1|, and the y-axis is:
    (1) 1 + \log_e 2
    (2) \log_e 2
    (3) 2 \log_e 2 - 1
    (4) 1 - \log_e 2
  143. The number of real solutions of the equation x^2 + 3 x + 2 = \min \{ |x - 3|, |x + 2| \} is:
    (1) 2
    (2) 0
    (3) 3
    (4) 1
  144. Let A = [a_{ij}] be a square matrix of order 2 with entries either 0 or 1. Let E be the event that A is an invertible matrix. Then the probability P(E) is:
    (1) \frac{5}{8}
    (2) \frac{3}{16}
    (3) \frac{1}{8}
    (4) \frac{3}{8}
  145. If the equation of the parabola with vertex V \left( \frac{3}{2}, 3 \right) and directrix x + 2 y = 0 is \alpha x^2 + \beta y^2 - \gamma x y - 30 x - 60 y + 225 = 0, then \alpha + \beta + \gamma is equal to:
    (1) 6
    (2) 8
    (3) 7
    (4) 9
  146. Number of functions f: \{1, 2, \ldots, 100\} \to \{0, 1\} that assign 1 to exactly one of the positive integers less than or equal to 98 is equal to.
  147. Let P be the image of the point Q(7, -2, 5) in the line L: \frac{x-1}{2} = \frac{y+1}{3} = \frac{z}{4}, and R(5, p, q) be a point on L. Then the square of the area of \triangle PQR is.
  148. Let y = y(x) be the solution of the differential equation 2 \cos x \frac{dy}{dx} = \sin 2 x - 4 y \sin x, x \in \left( 0, \frac{\pi}{2} \right). If y \left( \frac{\pi}{3} \right) = 0, then y' \left( \frac{\pi}{4} \right) + y \left( \frac{\pi}{4} \right) is equal to.
  149. Let H_1: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 and H_2: -\frac{x^2}{A^2} + \frac{y^2}{B^2} = 1 be two hyperbolas with lengths of latus rectums 15 \sqrt{2} and 12 \sqrt{5}, respectively. Let their eccentricities be e_1 = \sqrt{\frac{5}{2}} and e_2, respectively. If the product of the lengths of their transverse axes is 100 \sqrt{10}, then 25 e_2^2 is equal to.
  150. If \int \frac{2 x^2 + 5 x + 9}{\sqrt{x^2 + x + 1}} \, dx = x \sqrt{x^2 + x + 1} + \alpha \sqrt{x^2 + x + 1} + \beta \log_e \left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| + C, where C is the constant of integration, then \alpha + 2 \beta is equal to.
  151. The number of different 5-digit numbers greater than 50000 that can be formed using the digits 0, 1, 2, 3, 4, 5, 6, 7, such that the sum of their first and last digits is not more than 8, is:
    (1) 4608
    (2) 5720
    (3) 5719
    (4) 4607
  152. Let ABCD be a trapezium whose vertices lie on the parabola y^2 = 4 x. Let sides AD and BC be parallel to the y-axis. If the diagonal AC has length \frac{25}{4} and passes through point (1, 0), then the area of ABCD is:
    (1) \frac{75}{4}
    (2) \frac{25}{2}
    (3) \frac{125}{8}
    (4) \frac{75}{8}
  153. Two numbers k_1 and k_2 are randomly chosen from the set of natural numbers. Then, the probability that the value of i^{k_1} + i^{k_2}, (i = \sqrt{-1}), is non-zero, equals:
    (1) \frac{1}{2}
    (2) \frac{1}{4}
    (3) \frac{3}{4}
    (4) \frac{2}{3}
  154. If f(x) = \frac{2^x}{2^x + \sqrt{2}}, x \in \mathbb{R}, then \sum_{k=1}^{81} f \left( \frac{k}{82} \right) is equal to:
    (1) 41
    (2) \frac{81}{2}
    (3) 82
    (4) 81 \sqrt{2}
  155. Let f: \mathbb{R} \to \mathbb{R} be a function defined by f(x) = (2 + 3 a) x^2 + \left( \frac{a + 2}{a - 1} \right) x + b, a \neq 1. If f(x + y) = f(x) + f(y) + 1 - \frac{2}{7} x y, then the value of 28 \sum_{i=1}^5 |f(i)| is:
    (1) 715
    (2) 735
    (3) 545
    (4) 675
  156. Let A(x, y, z) be a point in the xy-plane, equidistant from points (0, 3, 2), (2, 0, 3), and (0, 0, 1). Let B = (1, 4, -1) and C = (2, 0, -2). Then among the statements:
    (S1) \triangle ABC is an isosceles right-angled triangle
    (S2) The area of \triangle ABC is \frac{9 \sqrt{2}}{2}
    (1) Both are true
    (2) Only (S1) is true
    (3) Only (S2) is true
    (4) Both are false
  157. The relation R = \{(x, y) : x, y \in \mathbb{Z} \text{ and } x + y \text{ is even}\} is:
    (1) Reflexive and transitive but not symmetric
    (2) Reflexive and symmetric but not transitive
    (3) An equivalence relation
    (4) Symmetric and transitive but not reflexive
  158. Let the equation of the circle that touches the x-axis at point (a, 0), a > 0, and cuts off an intercept of length b on the y-axis be x^2 + y^2 - \alpha x + \beta y + \gamma = 0. If the circle lies below the x-axis, then the ordered pair (2 a, b^2) is equal to:
    (1) \left( \alpha, \beta^2 + 4 \gamma \right)
    (2) \left( \gamma, \beta^2 - 4 \alpha \right)
    (3) \left( \gamma, \beta^2 + 4 \alpha \right)
    (4) \left( \alpha, \beta^2 - 4 \gamma \right)
  159. Let \langle a_n \rangle be a sequence such that a_0 = 0, a_1 = \frac{1}{2}, and 2 a_{n+2} = 5 a_{n+1} - 3 a_n, n = 0, 1, 2, 3, \ldots. Then \sum_{k=1}^{100} a_k is equal to:
    (1) 3 a_{99} - 100
    (2) 3 a_{100} - 100
    (3) 3 a_{100} + 100
    (4) 3 a_{99} + 100
  160. \cos \left( \sin^{-1} \frac{3}{5} + \sin^{-1} \frac{5}{13} + \sin^{-1} \frac{33}{65} \right) is equal to:
    (1) 1
    (2) 0
    (3) \frac{33}{65}
    (4) \frac{32}{65}
  161. Let T_r be the rth term of an arithmetic progression. If for some m, T_m = \frac{1}{25}, T_{25} = \frac{1}{20}, and 20 \sum_{r=1}^{25} T_r = 13, then 5 m \sum_{r=m}^{2m} T_r is equal to:
    (1) 112
    (2) 126
    (3) 98
    (4) 142
  162. If the image of the point (4, 4, 3) in the line \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{3} is (\alpha, \beta, \gamma), then \alpha + \beta + \gamma is equal to:
    (1) 9
    (2) 12
    (3) 8
    (4) 7
  163. If \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{96 x^2 \cos^2 x}{1 + e^x} \, dx = \pi \left( \alpha \pi^2 + \beta \right), \alpha, \beta \in \mathbb{Z}, then (\alpha + \beta)^2 equals:
    (1) 144
    (2) 196
    (3) 100
    (4) 64
  164. The sum of all local minimum values of the function f(x) = \begin{cases} 1 - 2 x, & x  2 \end{cases} is:
    (1) \frac{171}{72}
    (2) \frac{131}{72}
    (3) \frac{157}{72}
    (4) \frac{167}{72}
  165. The sum of the squares of all roots of the equation x^2 + |2 x - 3| - 4 = 0 is:
    (1) 3 (3 - \sqrt{2})
    (2) 6 (3 - \sqrt{2})
    (3) 6 (2 - \sqrt{2})
    (4) 3 (2 - \sqrt{2})
  166. Let for some function y = f(x), \int_{0}^{x} t f(t) \, dt = x^2 f(x), x > 0, and f(2) = 3. Then f(6) is equal to:
    (1) 1
    (2) 2
    (3) 6
    (4) 3
  167. Let {n \choose r-1} = 28, {n \choose r} = 56, and {n \choose r+1} = 70. Let A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t), and C(3 r - n, r^2 - n - 1) be the vertices of triangle ABC, where t is a parameter. If (3 x - 1)^2 + (3 y)^2 = \alpha is the locus of the centroid of triangle ABC, then \alpha equals:
    (1) 20
    (2) 8
    (3) 6
    (4) 18
  168. Let O be the origin, point A be z_1 = \sqrt{3} + 2 \sqrt{2} i, point B(z_2) be such that \sqrt{3} |z_2| = |z_1| and \arg(z_2) = \arg(z_1) + \frac{\pi}{6}. Then:
    (1) Area of triangle ABO is \frac{11}{\sqrt{3}}
    (2) ABO is a scalene triangle
    (3) Area of triangle ABO is \frac{11}{4}
    (4) ABO is an obtuse-angled isosceles triangle
  169. Three defective oranges are accidentally mixed with seven good ones, and it is not possible to differentiate between them. Two oranges are drawn at random. If x denotes the number of defective oranges, then the variance of x is:
    (1) \frac{28}{75}
    (2) \frac{14}{25}
    (3) \frac{26}{75}
    (4) \frac{18}{25}
  170. The area (in sq. units) of the region \left\{ (x, y) : 0 \leq y \leq 2 |x| + 1, 0 \leq y \leq x^2 + 1, |x| \leq 3 \right\} is:
    (1) \frac{80}{3}
    (2) \frac{64}{3}
    (3) \frac{17}{3}
    (4) \frac{32}{3}
  171. Let M denote the set of all real matrices of order 3 \times 3, and let S = \{-3, -2, -1, 1, 2\}. Let S_1 = \left\{ A = [a_{ij}] \in M : A = A^T \text{ and } a_{ij} \in S, \forall i, j \right\}, S_2 = \left\{ A = [a_{ij}] \in M : A = -A^T \text{ and } a_{ij} \in S, \forall i, j \right\}, S_3 = \left\{ A = [a_{ij}] \in M : a_{11} + a_{22} + a_{33} = 0 \text{ and } a_{ij} \in S, \forall i, j \right\}. If n(S_1 \cup S_2 \cup S_3) = 125 \alpha, then \alpha equals.
  172. If \alpha = 1 + \sum_{r=1}^{6} (-3)^{r-1} {12 \choose 2r-1}, then the distance of the point (12, \sqrt{3}) from the line \alpha x - \sqrt{3} y + 1 = 0 is.
  173. Let \vec{a} = \hat{i} + \hat{j} + \hat{k}, \vec{b} = 2 \hat{i} + 2 \hat{j} + \hat{k}, and \vec{d} = \vec{a} \times \vec{b}. If \vec{c} is a vector such that \vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - 2 \vec{a}|^2 = 8, and the angle between \vec{d} and \vec{c} is \frac{\pi}{4}, then |10 - 3 \vec{b} \cdot \vec{c}| + |\vec{d} \times \vec{c}|^2 is equal to.
  174. Let f(x) = \begin{cases} 3 x, & x  2 \end{cases}, where [.] denotes the greatest integer function. If \alpha and \beta are the number of points where f is not continuous and not differentiable, respectively, then \alpha + \beta equals.
  175. Let E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1 be an ellipse. Ellipses E_i‘s are constructed such that their centers and eccentricities are the same as those of E_1, and the length of the minor axis of E_i is the length of the major axis of E_{i+1} (i \geq 1). If A_i is the area of ellipse E_i, then \frac{5}{\pi} \left( \sum_{i=1}^{\infty} A_i \right) is equal to.
  176. Bag B_1 contains 6 white and 4 blue balls, Bag B_2 contains 4 white and 6 blue balls, and Bag B_3 contains 5 white and 5 blue balls. One bag is selected at random, and a ball is drawn from it. If the ball is white, then the probability that it is drawn from Bag B_2 is:
    (1) \frac{1}{3}
    (2) \frac{4}{15}
    (3) \frac{2}{3}
    (4) \frac{2}{5}
  177. Let A, B, and C be three points in the xy-plane with position vectors \sqrt{3} \hat{i} + \hat{j}, \hat{i} + \sqrt{3} \hat{j}, and a \hat{i} + (1 - a) \hat{j}, respectively, with respect to origin O. If the distance of point C from the line bisecting the angle between vectors \overrightarrow{OA} and \overrightarrow{OB} is \frac{9}{\sqrt{2}}, then the sum of all possible values of a is:
    (1) 1
    (2) \frac{9}{2}
    (3) 0
    (4) 2
  178. If the components of \vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} along and perpendicular to \vec{b} = 3 \hat{i} + \hat{j} - \hat{k} are \frac{16}{11} (3 \hat{i} + \hat{j} - \hat{k}) and \frac{1}{11} (-4 \hat{i} - 5 \hat{j} - 17 \hat{k}), respectively, then \alpha^2 + \beta^2 + \gamma^2 is equal to:
    (1) 23
    (2) 18
    (3) 16
    (4) 26
  179. If \alpha + i \beta and \gamma + i \delta are the roots of x^2 - (3 - 2 i) x - (2 i - 2) = 0, i = \sqrt{-1}, then \alpha \gamma + \beta \delta is equal to:
    (1) 6
    (2) 2
    (3) -2
    (4) -6
  180. If the midpoint of a chord of the ellipse \frac{x^2}{9} + \frac{y^2}{4} = 1 is \left( \sqrt{2}, \frac{4}{3} \right), and the length of the chord is \frac{2 \sqrt{\alpha}}{3}, then \alpha is:
    (1) 18
    (2) 22
    (3) 26
    (4) 20
  181. Let S be the set of all words formed by arranging all letters of the word GARDEN. From set S, one word is selected at random. The probability that the selected word does not have vowels in alphabetical order is:
    (1) \frac{1}{4}
    (2) \frac{2}{3}
    (3) \frac{1}{3}
    (4) \frac{1}{2}
  182. Let f be a real-valued continuous function defined on the positive real axis such that g(x) = \int_{0}^{x} t f(t) \, dt. If g(x^3) = x^6 + x^7, then the value of \sum_{r=1}^{15} f(r^3) is:
    (1) 320
    (2) 340
    (3) 270
    (4) 310
  183. The square of the distance of the point \left( \frac{15}{7}, \frac{32}{7}, 7 \right) from the line \frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7} in the direction of the vector \hat{i} + 4 \hat{j} + 7 \hat{k} is:
    (1) 54
    (2) 41
    (3) 66
    (4) 44
  184. The area of the region bounded by the curves x (1 + y^2) = 1 and y^2 = 2 x is:
    (1) 2 \left( \frac{\pi}{2} - \frac{1}{3} \right)
    (2) \frac{\pi}{4} - \frac{1}{3}
    (3) \frac{\pi}{2} - \frac{1}{3}
    (4) \frac{1}{2} \left( \frac{\pi}{2} - \frac{1}{3} \right)
  185. Let A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{bmatrix} and P = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \theta > 0. If B = P A P^T, C = P^T B^{10} P, and the sum of the diagonal elements of C is \frac{m}{n}, where \gcd(m, n) = 1, then m + n is:
    (1) 65
    (2) 127
    (3) 258
    (4) 2049
  186. If f(x) = \int \frac{1}{x^{1/4} (1 + x^{1/4})} \, dx, f(0) = -6, then f(1) is equal to:
    (1) \log_e 2 + 2
    (2) 4 (\log_e 2 - 2)
    (3) 2 - \log_e 2
    (4) 4 (\log_e 2 + 2)
  187. Let f: \mathbb{R} \to \mathbb{R} be a twice differentiable function such that f(2) = 1. If F(x) = x f(x) for all x \in \mathbb{R}, \int_{0}^{2} x F'(x) \, dx = 6, and \int_{0}^{2} x^2 F''(x) \, dx = 40, then F'(2) + \int_{0}^{2} F(x) \, dx is equal to:
    (1) 11
    (2) 15
    (3) 9
    (4) 13
  188. For positive integers n, if 4 a_n = n^2 + 5 n + 6 and S_n = \sum_{k=1}^{n} \left( \frac{1}{a_k} \right), then the value of 507 S_{2025} is:
    (1) 540
    (2) 1350
    (3) 675
    (4) 135
  189. Let f: [0, 3] \to A be defined by f(x) = 2 x^3 - 15 x^2 + 36 x + 7 and g: [0, \infty) \to B be defined by g(x) = \frac{x^{2025}}{x^{2025} + 1}. If both functions are onto and S = \{ x \in \mathbb{Z} : x \in A \text{ or } x \in B \}, then n(S) is equal to:
    (1) 30
    (2) 36
    (3) 29
    (4) 31
  190. Let [x] denote the greatest integer less than or equal to x. Then the domain of f(x) = \sec^{-1} (2 [x] + 1) is:
    (1) (-\infty, -1] \cup [0, \infty)
    (2) (-\infty, -\infty)
    (3) (-\infty, -1] \cup [1, \infty)
    (4) (-\infty, \infty) - \{0\}
  191. If \sum_{r=1}^{13} \left\{ \frac{1}{\sin \left( \frac{\pi}{4} + (r-1) \frac{\pi}{6} \right) \sin \left( \frac{\pi}{4} + \frac{r \pi}{6} \right)} \right\} = a \sqrt{3} + b, a, b \in \mathbb{Z}, then a^2 + b^2 is equal to:
    (1) 10
    (2) 2
    (3) 8
    (4) 4
  192. Two equal sides of an isosceles triangle are along -x + 2 y = 4 and x + y = 4. If m is the slope of its third side, then the sum of all possible distinct values of m is:
    (1) -6
    (2) 12
    (3) 6
    (4) -2 \sqrt{10}
  193. Let the coefficients of three consecutive terms T_r, T_{r+1}, and T_{r+2} in the binomial expansion of (a + b)^{12} be in a geometric progression, and let p be the number of all possible values of r. Let q be the sum of all rational terms in the binomial expansion of \left( \sqrt[4]{3} + \sqrt[3]{4} \right)^{12}. Then p + q is equal to:
    (1) 283
    (2) 295
    (3) 287
    (4) 299
  194. If A and B are the points of intersection of the circle x^2 + y^2 - 8 x = 0 and the hyperbola \frac{x^2}{9} - \frac{y^2}{4} = 1, and a point P moves on the line 2 x - 3 y + 4 = 0, then the centroid of \triangle PAB lies on the line:
    (1) 4 x - 9 y = 12
    (2) x + 9 y = 36
    (3) 9 x - 9 y = 32
    (4) 6 x - 9 y = 20
  195. Let f: \mathbb{R} - \{0\} \to (-\infty, 1) be a polynomial of degree 2, satisfying f(x) f\left( \frac{1}{x} \right) = f(x) + f\left( \frac{1}{x} \right). If f(K) = -2 K, then the sum of squares of all possible values of K is:
    (1) 1
    (2) 6
    (3) 7
    (4) 9
  196. The number of natural numbers between 212 and 999 such that the sum of their digits is 15 is.
  197. Let f(x) = \lim_{n \to \infty} \sum_{r=0}^{n} \left( \frac{\tan \left( \frac{x}{2^{r+1}} \right) + \tan^3 \left( \frac{x}{2^{r+1}} \right)}{1 - \tan^2 \left( \frac{x}{2^{r+1}} \right)} \right). Then \lim_{x \to 0} \frac{e^x - e^{f(x)}}{x - f(x)} is equal to.
  198. The interior angles of a polygon with n sides are in an arithmetic progression with common difference 6^\circ. If the largest interior angle is 219^\circ, then n is equal to.
  199. Let A and B be the two points of intersection of the line y + 5 = 0 and the mirror image of the parabola y^2 = 4 x with respect to the line x + y + 4 = 0. If d denotes the distance between A and B, and a denotes the area of \triangle SAB, where S is the focus of the parabola y^2 = 4 x, then the value of a + d is.
  200. If y = y(x) is the solution of the differential equation \sqrt{4 - x^2} \frac{dy}{dx} = \left( \left( \sin^{-1} \left( \frac{x}{2} \right) \right)^2 - y \right) \sin^{-1} \left( \frac{x}{2} \right), -2 \leq x \leq 2, y(2) = \frac{\pi^2 - 8}{4}, then y^2(0) is equal to.
  201. Let the line x + y = 1 meet the circle x^2 + y^2 = 4 at points A and B. If the line perpendicular to AB and passing through the midpoint of chord AB intersects the circle at C and D, then the area of quadrilateral ADBC is equal to:
    (1) 3 \sqrt{7}
    (2) 2 \sqrt{14}
    (3) 5 \sqrt{7}
    (4) \sqrt{14}
  202. Let M and m be the maximum and minimum values of f(x) = \left| \begin{array}{ccc} 1 + \sin^2 x & \cos^2 x & 4 \sin 4 x \\ \sin^2 x & 1 + \cos^2 x & 4 \sin 4 x \\ \sin^2 x & \cos^2 x & 1 + 4 \sin 4 x \end{array} \right|, x \in \mathbb{R}. Then M^4 - m^4 is equal to:
    (1) 1280
    (2) 1295
    (3) 1040
    (4) 1215
  203. Two parabolas have the same focus (4, 3), and their directrices are the x-axis and y-axis, respectively. If these parabolas intersect at points A and B, then (AB)^2 is equal to:
    (1) 192
    (2) 384
    (3) 96
    (4) 392
  204. Let ABC be a triangle formed by the lines 7 x - 6 y + 3 = 0, x + 2 y - 31 = 0, and 9 x - 2 y - 19 = 0. Let point (h, k) be the image of the centroid of \triangle ABC in the line 3 x + 6 y - 53 = 0. Then h^2 + k^2 + h k is equal to:
    (1) 37
    (2) 47
    (3) 40
    (4) 36
  205. Let \vec{a} = 2 \hat{i} - \hat{j} + 3 \hat{k}, \vec{b} = 3 \hat{i} - 5 \hat{j} + \hat{k}, and \vec{c} be a vector such that \vec{a} \times \vec{c} = \vec{c} \times \vec{b} and (\vec{a} + \vec{c}) \cdot (\vec{b} + \vec{c}) = 168. Then the maximum value of |\vec{c}|^2 is:
    (1) 77
    (2) 462
    (3) 308
    (4) 154
  206. Let P be the set of seven-digit numbers with the sum of their digits equal to 11. If the numbers in P are formed using digits 1, 2, and 3 only, then the number of elements in set P is:
    (1) 158
    (2) 173
    (3) 164
    (4) 161
  207. Let the area of the region \left\{ (x, y) : 2 y \leq x^2 + 3, y + |x| \leq 3, y \geq |x - 1| \right\} be A. Then 6 A is equal to:
    (1) 16
    (2) 12
    (3) 18
    (4) 14
  208. The least value of n for which the number of integral terms in the binomial expansion of \left( \sqrt[3]{7} + \sqrt[12]{11} \right)^n is 183 is:
    (1) 2184
    (2) 2148
    (3) 2172
    (4) 2196
  209. The number of solutions of the equation \left( \frac{9}{x} - \frac{9}{\sqrt{x}} + 2 \right) \left( \frac{2}{x} - \frac{7}{\sqrt{x}} + 3 \right) = 0 is:
    (1) 2
    (2) 4
    (3) 1
    (4) 3
  210. Let y = y(x) be the solution of the differential equation \cos x \left( \log_e (\cos x) \right)^2 dy + \left( \sin x - 3 y \sin x \log_e (\cos x) \right) dx = 0, x \in \left( 0, \frac{\pi}{2} \right). If y \left( \frac{\pi}{4} \right) = \frac{-1}{\log_e 2}, then y \left( \frac{\pi}{6} \right) is:
    (1) \frac{2}{\log_e 3 - \log_e 4}
    (2) \frac{1}{\log_e 4 - \log_e 3}
    (3) -\frac{1}{\log_e 4}
    (4) \frac{1}{\log_e 3 - \log_e 4}
  211. Define a relation R on the interval \left[ 0, \frac{\pi}{2} \right) by x R y if and only if \sec^2 x - \tan^2 y = 1. Then R is:
    (1) An equivalence relation
    (2) Both reflexive and transitive but not symmetric
    (3) Both reflexive and symmetric but not transitive
    (4) Reflexive but neither symmetric nor transitive
  212. Let the ellipse E_1: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, a > b, and E_2: \frac{x^2}{A^2} + \frac{y^2}{B^2} = 1, A < B, have the same eccentricity \frac{1}{\sqrt{3}}. Let the product of their latus rectum lengths be \frac{32}{\sqrt{3}}, and the distance between the foci of E_1 be 4. If E_1 and E_2 meet at points A, B, C, D, then the area of quadrilateral ABCD equals:
    (1) 6 \sqrt{6}
    (2) \frac{18 \sqrt{6}}{5}
    (3) \frac{12 \sqrt{6}}{5}
    (4) \frac{24 \sqrt{6}}{5}
  213. Consider an arithmetic progression of positive integers whose sum of the first three terms is 54 and the sum of the first twenty terms lies between 1600 and 1800. Then its 11th term is:
    (1) 84
    (2) 122
    (3) 90
    (4) 108
  214. Let \vec{a} = \hat{i} + 2 \hat{j} + \hat{k} and \vec{b} = 2 \hat{i} + 7 \hat{j} + 3 \hat{k}. Let L_1: \vec{r} = (-\hat{i} + 2 \hat{j} + \hat{k}) + \lambda \vec{a}, \lambda \in \mathbb{R}, and L_2: \vec{r} = (\hat{j} + \hat{k}) + \mu \vec{b}, \mu \in \mathbb{R}, be two lines. If the line L_3 passes through the point of intersection of L_1 and L_2, and is parallel to \vec{a} + \vec{b}, then L_3 passes through the point:
    (1) (8, 26, 12)
    (2) (2, 8, 5)
    (3) (-1, -1, 1)
    (4) (5, 17, 4)
  215. The value of \lim_{n \to \infty} \left( \sum_{k=1}^{n} \frac{k^3 + 6 k^2 + 11 k + 5}{(k+3)!} \right) is:
    (1) \frac{4}{3}
    (2) 2
    (3) \frac{7}{3}
    (4) \frac{5}{3}
  216. The integral 80 \int_{0}^{\frac{\pi}{4}} \left( \frac{\sin \theta + \cos \theta}{9 + 16 \sin 2 \theta} \right) d \theta is equal to:
    (1) 3 \log_e 4
    (2) 6 \log_e 4
    (3) 4 \log_e 3
    (4) 2 \log_e 3
  217. Let L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-1}{2} and L_2: \frac{x+1}{-1} = \frac{y-2}{2} = \frac{z}{1} be two lines. Let L_3 be a line passing through point (\alpha, \beta, \gamma) and be perpendicular to both L_1 and L_2. If L_3 intersects L_1, then |5 \alpha - 11 \beta - 8 \gamma| equals:
    (1) 18
    (2) 16
    (3) 25
    (4) 20
  218. Let x_1, x_2, \ldots, x_{10} be ten observations such that \sum_{i=1}^{10} (x_i - 2) = 30, \sum_{i=1}^{10} (x_i - \beta)^2 = 98, \beta > 2, and their variance is \frac{4}{5}. If \mu and \sigma^2 are respectively the mean and variance of 2 (x_1 - 1) + 4 \beta, 2 (x_2 - 1) + 4 \beta, \ldots, 2 (x_{10} - 1) + 4 \beta, then \frac{\beta \mu}{\sigma^2} is equal to:
    (1) 100
    (2) 110
    (3) 120
    (4) 90
  219. Let |z_1 - 8 - 2 i| \leq 1 and |z_2 - 2 + 6 i| \leq 2, z_1, z_2 \in \mathbb{C}. Then the minimum value of |z_1 - z_2| is:
    (1) 3
    (2) 7
    (3) 13
    (4) 10
  220. Let A = [a_{ij}] = \begin{bmatrix} \log_5 128 & \log_4 5 \\ \log_5 8 & \log_4 25 \end{bmatrix}. If A_{ij} is the cofactor of a_{ij}, C_{ij} = \sum_{k=1}^{2} a_{ik} A_{jk}, 1 \leq i, j \leq 2, and C = [C_{ij}], then 8 |C| is equal to:
    (1) 262
    (2) 288
    (3) 242
    (4) 222
  221. Let f: (0, \infty) \to \mathbb{R} be a twice differentiable function. If for some a \neq 0, \int_{0}^{1} f(\lambda x) \, d\lambda = a f(x), f(1) = 1, and f(16) = \frac{1}{8}, then 16 - f'\left( \frac{1}{16} \right) is equal to.
  222. Let S = \left\{ m \in \mathbb{Z} : A^{m^2} + A^m = 3 I - A^{-6} \right\}, where A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}. Then n(S) is equal to.
  223. Let [t] be the greatest integer less than or equal to t. Then the least value of p \in \mathbb{N} for which \lim_{x \to 0^+} \left( x \left( \left[ \frac{1}{x} \right] + \left[ \frac{2}{x} \right] + \ldots + \left[ \frac{p}{x} \right] \right) - x^2 \left( \left[ \frac{1}{x^2} \right] + \left[ \frac{2^2}{x^2} \right] + \ldots + \left[ \frac{9^2}{x^2} \right] \right) \right) \geq 1 is equal to.
  224. The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice, is 4.
  225. Let S = \left\{ x : \cos^{-1} x = \pi + \sin^{-1} x + \sin^{-1} (2 x + 1) \right\}. Then \sum_{x \in S} (2 x - 1)^2 is equal to.
  226. If the set of all a \in \mathbb{R} for which the equation 2 x^2 + (a - 5) x + 15 = 3 a has no real roots is the interval (\alpha, \beta), and X = \{ x \in \mathbb{Z} : \alpha < x < \beta \}, then \sum_{x \in X} x^2 is equal to:
    (1) 2109
    (2) 2129
    (3) 2139
    (4) 2119
  227. If \sin x + \sin^2 x = 1, x \in \left( 0, \frac{\pi}{2} \right), then \left( \cos^{12} x + \tan^{12} x \right) + 3 \left( \cos^{10} x + \tan^{10} x + \cos^8 x + \tan^8 x \right) + \left( \cos^6 x + \tan^6 x \right) is equal to:
    (1) 4
    (2) 3
    (3) 2
    (4) 1
  228. Let the area enclosed between the curves |y| = x^2 and x^2 + y^2 = 1 be \alpha. If 9 \alpha = \beta \pi + \gamma, \beta, \gamma are integers, then the value of |\beta - \gamma| equals:
    (1) 27
    (2) 18
    (3) 15
    (4) 33
  229. If the domain of the function \log_5 (18 x - x^2 - 77) is (\alpha, \beta) and the domain of the function \log_{x-1} \left( \frac{2 x^2 + 3 x - 2}{x^2 - 3 x - 4} \right) is (\gamma, \delta), then \alpha^2 + \beta^2 + \gamma^2 is equal to:
    (1) 195
    (2) 174
    (3) 186
    (4) 179
  230. Let the function f(x) = \left( x^2 - 1 \right) \left| x^2 - a x + 2 \right| + \cos |x| be not differentiable at the two points x = \alpha = 2 and x = \beta. Then the distance of the point (\alpha, \beta) from the line 12 x + 5 y + 10 = 0 is equal to:
    (1) 3
    (2) 4
    (3) 2
    (4) 5
  231. Let a straight line L pass through point P(2, -1, 3) and be perpendicular to the lines \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{-2} and \frac{x-3}{1} = \frac{y-2}{3} = \frac{z+2}{4}. If the line L intersects the yz-plane at point Q, then the distance between points P and Q is:
    (1) 2
    (2) \sqrt{10}
    (3) 3
    (4) 2 \sqrt{3}
  232. Let S = \mathbb{N} \cup \{0\}. Define a relation R from S to \mathbb{R} by R = \left\{ (x, y) : \log_e y = x \log_e \left( \frac{2}{5} \right), x \in S, y \in \mathbb{R} \right\}. Then, the sum of all elements in the range of R is equal to:
    (1) \frac{3}{2}
    (2) \frac{5}{3}
    (3) \frac{10}{9}
    (4) \frac{5}{2}
  233. Let the line x + y = 1 meet the x and y axes at A and B, respectively. A right-angled triangle AMN is inscribed in triangle OAB, where O is the origin and points M and N lie on lines OB and AB, respectively. If the area of triangle AMN is \frac{4}{9} of the area of triangle OAB and AN : NB = \lambda : 1, then the sum of all possible values of \lambda is:
    (1) \frac{1}{2}
    (2) \frac{13}{6}
    (3) \frac{5}{2}
    (4) 2
  234. If \alpha x + \beta y = 109 is the equation of the chord of the ellipse \frac{x^2}{9} + \frac{y^2}{4} = 1, whose midpoint is \left( \frac{5}{2}, \frac{1}{2} \right), then \alpha + \beta is equal to:
    (1) 37
    (2) 46
    (3) 58
    (4) 72
  235. If all words with or without meaning made using all letters of the word “KANPUR” are arranged as in a dictionary, then the word at the 440th position in this arrangement is:
    (1) PRNAKU
    (2) PRKANU
    (3) PRKAUN
    (4) PRNAUK
  236. Let \alpha, \beta (\alpha \neq \beta) be the values of m for which the equations x + y + z = 1, x + 2 y + 4 z = m, and x + 4 y + 10 z = m^2 have infinitely many solutions. Then the value of \sum_{n=1}^{10} \left( n^\alpha + n^\beta \right) is equal to:
    (1) 440
    (2) 3080
    (3) 3410
    (4) 560
  237. Let A = [a_{ij}] be a matrix of order 3 \times 3, with a_{ij} = (\sqrt{2})^{i+j}. If the sum of all elements in the third row of A^2 is \alpha + \beta \sqrt{2}, \alpha, \beta \in \mathbb{Z}, then \alpha + \beta is equal to:
    (1) 280
    (2) 168
    (3) 210
    (4) 224
  238. Let P be the foot of the perpendicular from point (1, 2, 2) on the line L: \frac{x-1}{1} = \frac{y+1}{-1} = \frac{z-2}{2}. Let the line \vec{r} = (-\hat{i} + \hat{j} - 2 \hat{k}) + \lambda (\hat{i} - \hat{j} + \hat{k}), \lambda \in \mathbb{R}, intersect line L at Q. Then 2 (PQ)^2 is equal to:
    (1) 27
    (2) 25
    (3) 29
    (4) 19
  239. Let a circle C pass through points (4, 2) and (0, 2), and its center lie on 3 x + 2 y + 2 = 0. Then the length of the chord of circle C, whose midpoint is (1, 2), is:
    (1) \sqrt{3}
    (2) 2 \sqrt{3}
    (3) 4 \sqrt{2}
    (4) 2 \sqrt{2}
  240. Let A = [a_{ij}] be a 2 \times 2 matrix such that a_{ij} \in \{0, 1\} for all i and j. Let the random variable X denote the possible values of the determinant of matrix A. Then, the variance of X is:
    (1) \frac{1}{4}
    (2) \frac{3}{8}
    (3) \frac{5}{8}
    (4) \frac{3}{4}
  241. Bag 1 contains 4 white balls and 5 black balls, and Bag 2 contains n white balls and 3 black balls. One ball is drawn randomly from Bag 1 and transferred to Bag 2. A ball is then drawn randomly from Bag 2. If the probability that the ball drawn is white is \frac{29}{45}, then n is equal to:
    (1) 3
    (2) 4
    (3) 5
    (4) 6
  242. The remainder when 7^{103} is divided by 23 is equal to:
    (1) 14
    (2) 9
    (3) 17
    (4) 6
  243. Let f(x) = \int_{0}^{x} t (t^2 - 9 t + 20) \, dt, 1 \leq x \leq 5. If the range of f is [\alpha, \beta], then 4 (\alpha + \beta) equals:
    (1) 157
    (2) 253
    (3) 125
    (4) 154
  244. Let \vec{a} be a unit vector perpendicular to vectors \vec{b} = \hat{i} - 2 \hat{j} + 3 \hat{k} and \vec{c} = 2 \hat{i} + 3 \hat{j} - \hat{k}, and makes an angle of \cos^{-1} \left( -\frac{1}{3} \right) with vector \hat{i} + \hat{j} + \hat{k}. If \vec{a} makes an angle of \frac{\pi}{3} with vector \hat{i} + \alpha \hat{j} + \hat{k}, then the value of \alpha is:
    (1) -\sqrt{3}
    (2) \sqrt{6}
    (3) -\sqrt{6}
    (4) \sqrt{3}
  245. If for the solution curve y = f(x) of the differential equation \frac{dy}{dx} + (\tan x) y = \frac{2 + \sec x}{(1 + 2 \sec x)^2}, x \in \left( -\frac{\pi}{2}, \frac{\pi}{2} \right), f \left( \frac{\pi}{3} \right) = \frac{\sqrt{3}}{10}, then f \left( \frac{\pi}{4} \right) is equal to:
    (1) \frac{9 \sqrt{3} + 3}{10 (4 + \sqrt{3})}
    (2) \frac{\sqrt{3} + 1}{10 (4 + \sqrt{3})}
    (3) \frac{5 - \sqrt{3}}{2 \sqrt{2}}
    (4) \frac{4 - \sqrt{2}}{14}
  246. If 24 \int_{0}^{\frac{\pi}{4}} \left( \sin \left| 4 x - \frac{\pi}{12} \right| + [2 \sin x] \right) dx = 2 \pi + \alpha, where [.] denotes the greatest integer function, then \alpha is equal to.
  247. If \lim_{t \to 0} \left( \int_{0}^{1} (3 x + 5)^t \, dx \right)^{\frac{1}{t}} = \frac{\alpha}{5 e} \left( \frac{8}{5} \right)^{\frac{2}{3}}, then \alpha is equal to.
  248. Let a_1, a_2, \ldots, a_{2024} be an arithmetic progression such that a_1 + \left( a_5 + a_{10} + a_{15} + \ldots + a_{2020} \right) + a_{2024} = 2233. Then a_1 + a_2 + a_3 + \ldots + a_{2024} is equal to.
  249. Let integers a, b \in [-3, 3] be such that a + b \neq 0. Then the number of all possible ordered pairs (a, b) for which \left| \frac{z - a}{z + b} \right| = 1 and \left| \begin{array}{ccc} z + 1 & \omega & \omega^2 \\ \omega & z + \omega^2 & 1 \\ \omega^2 & 1 & z + \omega \end{array} \right| = 1, z \in \mathbb{C}, where \omega and \omega^2 are the roots of x^2 + x + 1 = 0, is equal to.
  250. Let y^2 = 12 x be the parabola and S be its focus. Let PQ be a focal chord of the parabola such that (SP)(SQ) = \frac{147}{4}. Let C be the circle described taking PQ[/sqrt{3} y = \beta, then \beta - \alpha is equal to.