GUJCET PYQ’s 2025

SECTION A: Multiple Choice Questions

1. If \int \tan ^{-1} x d x=\mathrm{A} x \cdot \tan ^{-1} x+\mathrm{B} \log \left(1+x^{2}\right)+\mathrm{C} then, \mathrm{A}+\mathrm{B}= .
(A) 1 / 2
(B) -1 / 2
(C) 1
(D) -1
Click to View Answer
Correct Answer: [Insert Correct Answer]
2. The area bounded by the curve y=\sin x between x=-\pi / 2 and x=\pi / 2 is .
(A) 2
(B) 1
(C) 3
(D) 4
Click to View Answer
Correct Answer: [Insert Correct Answer]
3. Area of the region bounded by the curve x^{2}=4 y and the line y=3 is
(A) 2 \sqrt{3}
(B) 3 \sqrt{3}
(C) \sqrt{3}
(D) 4 \sqrt{3}
Click to View Answer
Correct Answer: [Insert Correct Answer]
4. Area of the region bounded by the curve y=x^{3}, x-axis and the ordinates x=-1 and x=2 is
(A) 19 / 4
(B) 9 / 4
(C) 15 / 4
(D) 17 / 4
Click to View Answer
Correct Answer: [Insert Correct Answer]
5. The degree of the differential equation \left(1+\frac{d y}{d x}\right)^{\frac{1}{2}}=\left(\frac{d^{2} y}{d x^{2}}\right)^{1 / 3} is
(A) 2
(B) 1
(C) 3
(D) 4
Click to View Answer
Correct Answer: [Insert Correct Answer]
6. The general solution of the differential equation \frac{d y}{d x}=e^{y-x} is .
(A) e^{x}-e^{y}=c
(B) e^{x}-e^{-y}=c
(C) e^{-x}-e^{y}=c
(D) e^{-x}-e^{-y}=c
Click to View Answer
Correct Answer: [Insert Correct Answer]
7. The Integrating Factor of the differential equation x \cdot \frac{d y}{d x}+2 y=x^{2},(x \neq 0) is
(A) e^{-x}
(B) x^{2}
(C) e^{-y}
(D) \frac{1}{x^{2}}
Click to View Answer
Correct Answer: [Insert Correct Answer]
8. \hat{i} \cdot(\hat{k} \times \hat{j})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} \cdot(\hat{i} \times \hat{j})=
(A) 1
(B) 0
(C) -1
(D) -3
Click to View Answer
Correct Answer: [Insert Correct Answer]
9. A unit vector perpendicular to each of the vectors (\vec{a}+\vec{b}) and (\vec{a}-\vec{b}) is , where \vec{a}=\hat{i}+\hat{j}+\hat{k} and \vec{b}=\hat{i}+2 \hat{j}+3 \hat{k}
(A) -\frac{1}{\sqrt{12}} \hat{i}+\frac{2}{\sqrt{12}} \hat{j}-\frac{1}{\sqrt{12}} \hat{k}
(B) \frac{1}{\sqrt{6}} \hat{i}+\frac{2}{\sqrt{6}} \hat{j}+\frac{1}{\sqrt{6}} \hat{k}
(C) \frac{1}{\sqrt{12}} \hat{i}+\frac{2}{\sqrt{12}} \hat{j}-\frac{1}{\sqrt{12}} \hat{k}
(D) -\frac{1}{\sqrt{6}} \hat{i}+\frac{2}{\sqrt{6}} \hat{j}-\frac{1}{\sqrt{6}} \hat{k}
Click to View Answer
Correct Answer: [Insert Correct Answer]
10. Area of a rectangle having vertices A, B, C and D with position vectors -\hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}+\frac{1}{2} \hat{j}+4 \hat{k}, \hat{i}-\frac{1}{2} \hat{j}+4 \hat{k} and -\hat{i}-\frac{1}{2} \hat{j}+4 \hat{k}, respectively is .
(A) 1
(B) \frac{1}{2}
(C) 2
(D) 4
Click to View Answer
Correct Answer: [Insert Correct Answer]
11. The Cartesian equation of the line through the point (5,-2,4) and which is parallel to the vector 3 \hat{i}-2 \hat{j}+8 \hat{k} is
(A) \frac{x+5}{-3}=\frac{y-2}{2}=\frac{z+4}{8}
(B) \frac{x-5}{-3}=\frac{y+2}{2}=\frac{z-4}{8}
(C) \frac{x+5}{3}=\frac{y-2}{-2}=\frac{z+4}{8}
(D) \frac{x-5}{3}=\frac{y+2}{-2}=\frac{z-4}{8}
Click to View Answer
Correct Answer: [Insert Correct Answer]
12. The shortest distance between the lines \frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6} and \frac{x-3}{2}=\frac{y-3}{3}=\frac{z+5}{6} is .
(A) \sqrt{\frac{293}{49}}
(B) \sqrt{\frac{293}{7}}
(C) \sqrt{\frac{209}{7}}
(D) \sqrt{\frac{209}{49}}
Click to View Answer
Correct Answer: [Insert Correct Answer]
13. The angle between the pair of lines \vec{r}=-3 \hat{i}+\hat{j}+3 \hat{k}+\lambda(3 \hat{i}+5 \hat{j}+4 \hat{k}) and \vec{r}=-\hat{i}+4 \hat{j}+5 \hat{k}+\mu(\hat{i}+\hat{j}+2 \hat{k}) is
(A) \cos ^{-1}\left(\frac{6 \sqrt{2}}{15}\right)
(B) \sin ^{-1}\left(\frac{6 \sqrt{2}}{15}\right)
(C) \cos ^{-1}\left(\frac{8 \sqrt{3}}{15}\right)
(D) \sin ^{-1}\left(\frac{8 \sqrt{3}}{15}\right)
Click to View Answer
Correct Answer: [Insert Correct Answer]
14. The coordinates of the corner points of the bounded feasible region are (0,0),(0,40),(20,40),(60,20),(60,0). The maximum of the objective function z=40 x+30 y is .
(A) 3400
(B) 3000
(C) 2400
(D) 2000
Click to View Answer
Correct Answer: [Insert Correct Answer]
15. The maximum value of z=5 x+3 y subject to constraints 3 x+5 y \leq 15, x \geq 0, y \geq 0 is :
(A) 25
(B) 9
(C) 0
(D) 10
Click to View Answer
Correct Answer: [Insert Correct Answer]
16. Two events E and F are independent. If P(E)=\frac{3}{5} and P(F)=\frac{3}{10} then \mathrm{P}\left(\mathrm{E}^{\prime} / \mathrm{F}\right)+\mathrm{P}\left(\mathrm{F}^{\prime} / \mathrm{E}\right)=
(A) \frac{11}{10}
(B) \frac{10}{11}
(C) \frac{9}{10}
(D) \frac{1}{10}
Click to View Answer
Correct Answer: [Insert Correct Answer]
17. Let A and B be two events such that \mathrm{P}(\mathrm{A})=\frac{3}{8}, \mathrm{P}(\mathrm{B})=\frac{5}{8} and \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\frac{3}{4}. Then \mathrm{P}\left(\mathrm{A}^{\prime} \mid \mathrm{B}\right)-\mathrm{P}(\mathrm{A} \mid \mathrm{B})= .
(A) \frac{3}{5}
(B) \frac{4}{5}
(C) \frac{2}{5}
(D) \frac{1}{5}
Click to View Answer
Correct Answer: [Insert Correct Answer]
18. A man is known to speak truth 4 out of 5 times. He throws a die and reports that it is a six. The probability that actually there was a six is
(A) \frac{4}{9}
(B) \frac{4}{35}
(C) \frac{5}{35}
(D) \frac{5}{9}
Click to View Answer
Correct Answer: [Insert Correct Answer]
19. Let \mathrm{A}=\{1,2,3\}. Then number of relations containing (1,2) which are symmetric and transitive but not reflexive is .
(A) 2
(B) 1
(C) 3
(D) 4
Click to View Answer
Correct Answer: [Insert Correct Answer]
20. Let f: \mathrm{R} \rightarrow \mathrm{R} be defined as f(x)=x^{3}. Then f is .
(A) Many – one and onto
(B) One – one and onto
(C) One – one but not onto
(D) Neither one – one nor onto
Click to View Answer
Correct Answer: [Insert Correct Answer]
21. \tan ^{-1}\left[\frac{\sqrt{2}}{\sqrt{3}} \cos \left(5 \sin ^{-1} \frac{1}{\sqrt{2}}\right)\right]=
(A) \pi / 3
(B) \pi / 6
(C) -\pi / 6
(D) -\pi / 3
Click to View Answer
Correct Answer: [Insert Correct Answer]
22. If y=3 \sin ^{-1} x+\sin ^{-1}\left(3 x-4 x^{3}\right) for all x \in[-1 / 2,1 / 2], then
(A) -\pi / 3 \leq y \leq \pi / 3
(B) -\pi / 6 \leq y \leq \pi / 6
(C) -\pi / 2 \leq y \leq \pi / 2
(D) -\pi \leq y \leq \pi
Click to View Answer
Correct Answer: [Insert Correct Answer]
23. The number of real solutions of the equation \tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2} is
(A) 0
(B) 4
(C) 2
(D) 1
Click to View Answer
Correct Answer: [Insert Correct Answer]
24. \left|\begin{array}{cc}\cos ^{2} \theta & -\sin ^{2} \theta \\ \sin ^{2} \theta & \cos ^{2} \theta\end{array}\right|= .
(A) \frac{1}{4}(3+\cos 4 \theta)
(B) 1+2 \sin ^{2} \theta \cdot \cos ^{2} \theta
(C) 1+\frac{1}{2} \sin ^{2} 2 \theta
(D) \frac{1}{2}-\frac{1}{2} \cos ^{2} 2 \theta
Click to View Answer
Correct Answer: [Insert Correct Answer]
25. Let A be an invertible square matrix of order 3 \times 3. Then |(\operatorname{adj} \mathrm{A}) \cdot \mathrm{A}| is .
(A) |\mathrm{A}|^{2}
(B) |\mathrm{A}|
(C) |\mathrm{A}|^{3}
(D) 3|\mathrm{A}|
Click to View Answer
Correct Answer: [Insert Correct Answer]
26. Find the area of a triangle given that midpoints of its sides are (2,7),(1,1) and (10,8).
(A) 47
(B) \frac{47}{2}
(C) 94
(D) \frac{47}{4}
Click to View Answer
Correct Answer: [Insert Correct Answer]
27. If the matrix \left[\begin{array}{ccc}x & x^{2}+3 x & 5 \\ -2 x-6 & x^{2} & -4 x-2 \\ 5 & x^{2}+2 & x^{3}\end{array}\right] is a symmetric matrix, then the value of x is .
(A) 3,2
(B) -3,-2
(C) -3
(D) -2
Click to View Answer
Correct Answer: [Insert Correct Answer]
28. If \mathrm{A}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], then (\mathrm{A}+\mathrm{I})^{3}+(\mathrm{A}-\mathrm{I})^{3}= .
(A) 8 I
(B) 6 I
(C) 6 A
(D) 8 A
Click to View Answer
Correct Answer: [Insert Correct Answer]
29. For matrix A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right], if A^{2}-2 I=K A then K= .
(A) 5
(B) 7
(C) -7
(D) -5
Click to View Answer
Correct Answer: [Insert Correct Answer]
30. \frac{d}{d x}\left(5^{\log x}\right)=
(A) \log _{x} 5 \cdot 5^{\log x}
(B) \log 5 \cdot 5^{\log x}
(C) \log 5 \cdot x^{\log \left(\frac{5}{e}\right)}
(D) \log 5 \cdot x^{\log (5 e)}
Click to View Answer
Correct Answer: [Insert Correct Answer]
31. If x=a \cos \theta, y=a \sin \theta, then \frac{d^{2} y}{d x^{2}}= $(a \neq 0 ; \theta \neq k \pi, k \in z)$
(A) -\frac{1}{a} \operatorname{cosec}^{2} \theta \cdot \sec \theta
(B) \operatorname{cosec}^{2} \theta
(C) \frac{1}{a} \cot ^{3} \theta
(D) -\frac{1}{a} \operatorname{cosec}^{3} \theta
Click to View Answer
Correct Answer: [Insert Correct Answer]
32. \frac{d}{d x}\left[3 \sin \left(60^{\circ}-x^{\circ}\right)-4 \cos ^{3}\left(30^{\circ}+x^{\circ}\right)\right]= .
(A) \frac{\pi}{60} \sin \left(3 x^{\circ}\right)
(B) -\frac{\pi}{60} \cos \left(3 x^{\circ}\right)
(C) \frac{\pi}{60} \cos \left(3 x^{\circ}\right)
(D) -\frac{\pi}{60} \sin \left(3 x^{\circ}\right)
Click to View Answer
Correct Answer: [Insert Correct Answer]
33. If f(x)=\left\{\begin{array}{cl}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}} & , x \neq 2 \\ k & , x=2\end{array}\right. is continuous at x=2 then k=
(A) 7
(B) 5
(C) -5
(D) -7
Click to View Answer
Correct Answer: [Insert Correct Answer]
34. The total cost C(x) in Rupees, associated with the production of x units of an item is given by \mathrm{C}(x)=0.05 x^{3}-0.2 x^{2}+3 x+500. The marginal cost, where x=3 is (in Ruppes)
(A) 30.15
(B) 30.015
(C) 3.015
(D) 3.15
Click to View Answer
Correct Answer: [Insert Correct Answer]
35. The function f(x)=\tan x-4 x is strictly decreasing on .
(A) \left(-\frac{\pi}{3}, \pi\right)
(B) \left(-\frac{\pi}{3}, \frac{\pi}{2}\right)
(C) \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)
(D) \left(-\frac{\pi}{2}, \frac{\pi}{3}\right)
Click to View Answer
Correct Answer: [Insert Correct Answer]
36. The absolute minimum value of the function f(x)=x^{3}-18 x^{2}+96 x, x \in[0,9] is .
(A) 0
(B) 126
(C) -135
(D) -160
Click to View Answer
Correct Answer: [Insert Correct Answer]
37. If \int \frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}} d x=p x+q \cdot \log \left|4 e^{x}+5 e^{-x}\right|+\mathrm{C}, then
(A) p=1 / 8, q=7 / 8
(B) p=-1 / 8, q=7 / 8
(C) p=-1 / 8, q=-7 / 8
(D) p=1 / 8, q=-7 / 8
Click to View Answer
Correct Answer: [Insert Correct Answer]
38. \int e^{\tan ^{-1} x}\left(\frac{1+x+x^{2}}{1+x^{2}}\right) d x=
(A) \frac{1+x^{2}}{x} \cdot e^{\tan ^{-1} x}
(B) \frac{x \cdot e^{\tan ^{-1} x}}{1+x^{2}}
(C) x \cdot e^{\tan ^{-1} x}
(D) \frac{e^{\tan ^{-1} x}}{x}
Click to View Answer
Correct Answer: [Insert Correct Answer]
39. \int_{0}^{\pi / 4} \sqrt{1+\sin 2 x} d x=
(A) 1
(B) 0
(C) 1 / 2
(D) 2
Click to View Answer
Correct Answer: [Insert Correct Answer]
40. \int \frac{d x}{\sqrt{4 x-9 x^{2}}}=\quad+\mathrm{C}
(A) \frac{1}{9} \sin ^{-1}\left(\frac{3 x-2}{2}\right)
(B) \frac{1}{2} \sin ^{-1}\left(\frac{9 x-3}{2}\right)
(C) \frac{1}{9} \sin ^{-1}\left(\frac{2 x-3}{3}\right)
(D) \frac{1}{3} \sin ^{-1}\left(\frac{9 x-2}{2}\right)
Click to View Answer
Correct Answer: [Insert Correct Answer]
41. The order and the degree of the differential equation \sqrt{\frac{d^2 y}{d x^2}}=\sqrt[3]{\left(\frac{d y}{d x}\right)^4+2} is respectively … and …
(A) 1,8
(B) 3,2
(C) 2,8
(D) 2,3
Click to View Answer
Correct Answer: [Insert Correct Answer]