7. Trigonometric Equations(11th)

Trigonometric Equations

1. The number of solutions of the equation \cos \theta \cos \frac{\theta}{2} + \cos \frac{5\theta}{2} = 2 \cos^3 \frac{5\theta}{2} in [- \pi, \pi] is:
(A) 5
(B) 7
(C) 6
(D) 9
Click to View Answer
Correct Answer: [Insert Correct Answer]
2. The number of solutions of the equation (4 - \sqrt{3}) \sin x - 2\sqrt{3} \cos^2 x = -\frac{4}{1 + \sqrt{3}}, x \in [-2\pi, \frac{5\pi}{2}] is:
(A) 4
(B) 3
(C) 6
(D) 5
Click to View Answer
Correct Answer: [Insert Correct Answer]
3. The number of solutions of the equation 2x + 3 \tan x = \pi, x \in [-2\pi, 2\pi] - \{\pm \frac{\pi}{2}, \pm \frac{3\pi}{2}\} is:
(A) 4
(B) 5
(C) 3
(D) 6
Click to View Answer
Correct Answer: [Insert Correct Answer]
4. If \theta \in [-\frac{7\pi}{6}, \frac{4\pi}{3}], then the number of solutions of \sqrt{3} \csc^2 \theta - 2(\sqrt{3} - 1) \csc \theta - 4 = 0 is equal to:
(A) 7
(B) 10
(C) 6
(D) 8
Click to View Answer
Correct Answer: [Insert Correct Answer]
5. If \theta \in [-2\pi, 2\pi], then the number of solutions of 2\sqrt{2} \cos^2 \theta + (2 - \sqrt{6}) \cos \theta - \sqrt{3} = 0 is equal to:
(A) 8
(B) 6
(C) 10
(D) 12
Click to View Answer
Correct Answer: [Insert Correct Answer]
6. The sum of all values of \theta \in [0, 2\pi] satisfying 2 \sin^2 \theta = \cos 2\theta and 2 \cos^2 \theta = 3 \sin \theta is:
(A) \pi
(B) \frac{5\pi}{6}
(C) \frac{\pi}{2}
(D) 4\pi
Click to View Answer
Correct Answer: [Insert Correct Answer]
7. Let |\cos \theta \cos(60 - \theta) \cos(60 + \theta)| \leq \frac{1}{8}, \theta \in [0, 2\pi]. Then, the sum of all \theta \in [0, 2\pi] where \cos 3\theta attains its maximum value, is:
(A) 6\pi
(B) 9\pi
(C) 18\pi
(D) 15\pi
Click to View Answer
Correct Answer: [Insert Correct Answer]
8. The number of solutions of the equation 4 \sin^2 x - 4 \cos^3 x + 9 - 4 \cos x = 0; x \in [-2\pi, 2\pi] is:
(A) 0
(B) 3
(C) 1
(D) 2
Click to View Answer
Correct Answer: [Insert Correct Answer]
9. If 2 \sin^3 x + \sin 2x \cos x + 4 \sin x - 4 = 0 has exactly 3 solutions in the interval [0, \frac{n\pi}{2}], n \in \mathbb{N}, then the roots of the equation x^2 + nx + (n - 3) = 0 belong to:
(A) (0, \infty)
(B) \mathbb{Z}
(C) (-\frac{\sqrt{17}}{2}, \frac{\sqrt{17}}{2})
(D) (-\infty, 0)
Click to View Answer
Correct Answer: [Insert Correct Answer]
10. The sum of the solutions x \in \mathbb{R} of the equation \frac{3 \cos 2x - \cos^3 2x}{\cos^2 x - \sin^2 x} = x^3 - x^2 + 6 is:
(A) 3
(B) 1
(C) 0
(D) -1
Click to View Answer
Correct Answer: [Insert Correct Answer]
11. If \alpha, -\frac{\pi}{2} < \alpha < \frac{\pi}{2} is the solution of 4 \cos \theta + 5 \sin \theta = 1, then the value of \tan \alpha is:
(A) \frac{10 - \sqrt{10}}{12}
(B) \frac{\sqrt{10 - 10}}{6}
(C) \frac{\sqrt{10 - 10}}{12}
(D) \frac{10 - \sqrt{10}}{6}
Click to View Answer
Correct Answer: [Insert Correct Answer]
12. If 2 \tan^2 \theta - 5 \sec \theta = 1 has exactly 7 solutions in the interval [0, \frac{n\pi}{2}], for the least value of n \in \mathbb{N}, then \sum_{k=1}^{n} \frac{k}{2^k} is equal to:
(A) \frac{1}{2^{14}} (2^{15} - 15)
(B) 1 - \frac{15}{2^{18}}
(C) \frac{1}{2^{15}} (2^{14} - 14)
(D) \frac{1}{2^{13}} (2^{14} - 15)
Click to View Answer
Correct Answer: [Insert Correct Answer]
13. The number of elements in the set S = \{\theta \in [0, 2\pi) : 3 \cos^4 \theta - 5 \cos^2 \theta - 2 \sin^4 \theta + 2 = 0\} is:
(A) 9
(B) 8
(C) 12
(D) 10
Click to View Answer
Correct Answer: [Insert Correct Answer]
14. Let S = \{x \in (-\frac{\pi}{2}, \frac{\pi}{2}) : 9^{1- \tan^2 x} + 9^{\tan^2 x} = 10\} and \beta = \sum_{x \in S} \tan^2 (\frac{x}{3}), then \frac{1}{6} (\beta - 14)^2 is equal to:
(A) 16
(B) 32
(C) 8
(D) 64
Click to View Answer
Correct Answer: [Insert Correct Answer]
15. The number of elements in the set S = \{x \in \mathbb{R} : 2 \cos (\frac{x^2 + x}{6}) = 4^x + 4^{-x}\} is:
(A) 1
(B) 3
(C) 0
(D) infinite
Click to View Answer
Correct Answer: [Insert Correct Answer]
16. Let S = \{\theta \in (0, \pi) : \sum_{m=1}^9 \sec (\theta + (m-1) \frac{\pi}{6}) \sec (\theta + \frac{m\pi}{6}) = -\frac{8}{\sqrt{3}}\}. Then:
(A) S = \{\frac{\pi}{12}\}
(B) S = \{\frac{2\pi}{3}\}
(C) \sum_{\theta \in S} \theta = \frac{\pi}{2}
(D) \sum_{\theta \in S} \theta = \frac{3\pi}{4}
Click to View Answer
Correct Answer: [Insert Correct Answer]
17. Let S = \{\theta \in [0, 2\pi) : 8^{2\sin^2 \theta} + 8^{2 \cos^2 \theta} = 16\}. Then \frac{1}{8} + \sum_{\theta \in S} \left(\sec (\frac{\pi}{4} + 2\theta) \csc (\frac{\pi}{4} + 2\theta)\right) is equal to:
(A) 0
(B) -2
(C) -4
(D) 12
Click to View Answer
Correct Answer: [Insert Correct Answer]
18. The number of solutions of |\cos x| = \sin x, such that -4\pi \leq x \leq 4\pi is:
(A) 4
(B) 6
(C) 8
(D) 12
Click to View Answer
Correct Answer: [Insert Correct Answer]
19. Let for some real numbers \alpha and \beta, \alpha = a - i\beta. If the system of equations 4i\alpha x + (1 + i)y = 0 and 8 \left(\cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}\right) x + \alpha y = 0 has more than one solution, then \frac{\alpha}{\beta} is equal to:
(A) -2\sqrt{3}
(B) 2 - \sqrt{3}
(C) 2 + \sqrt{3}
(D) -2 - \sqrt{3}
Click to View Answer
Correct Answer: [Insert Correct Answer]
20. The number of solutions of the equation \cos (x + \frac{\pi}{3}) \cos (\frac{\pi}{3} - x) = \frac{1}{4} \cos^2 2x, x \in [-3\pi, 3\pi] is:
(A) 8
(B) 5
(C) 6
(D) 7
Click to View Answer
Correct Answer: [Insert Correct Answer]

Pages: 1 2 3